pFind Studio: a computational solution for mass spectrometry-based proteomics
2022
Analytical Chemistry2022. Gao, H et al.
Chinese Acad Sci, Dalian Inst Chem Phys, Natl Chromatog R&A Ctr, CAS Key Lab Separat Sci Analyt Chem, Dalian 116023, Liaoning, Peoples R China
ABSTRACT:The coverage of chemical crosslinking coupled with mass spectrometry (CXMS) is of great importance to determine its ability for deciphering protein structures. At present, N- hydroxysuccinimidyl (NHS) ester-based crosslinkers targeting lysines have been predominantly used in CXMS. However, they are not always effective for some proteins with few lysines. Other amino acid residues such as carboxyl could be crosslinked to complement lysines and improve the crosslinking coverage of CXMS, but the low intrinsic chemical reactivity of carboxyl compromises the application of carboxyl-selective crosslinkers for complex samples. To enhance the crosslinking efficiency targeting acidic residues and realize in-depth crosslinking analysis of complex samples, we developed three new alkynyl-enrichable carboxyl-selective crosslinkers with different reactive groups such as hydrazide, amino, and aminooxy. The crosslinking efficiencies of the three crosslinkers were systematically evaluated, giving the best reactivity of the amino-functionalized crosslinker BAP. Furthermore, BAP was extended to the crosslinking analysis of Escherichia coli lysate in combination with efficient crosslink enrichment. A total of 1291 D/E-D/E crosslinks involved in 392 proteins were identified under a false discovery rate (FDR) of >= 1%. Obvious structural complementarity of BAP was exhibited to the lysine-targeting crosslinker, facilitating the capability of CXMS for protein structure elucidation. To the best of our knowledge, this was the first time for the carboxyl-selective crosslinker to achieve proteome-wide crosslinking analysis of the whole cell lysate. Collectively, we believe that this work not only expands on a promising toolkit of CXMS targeting acidic residues but also provides a valuable guideline to advance the performance of carboxyl-selective crosslinkers.
Use: pLink
Nature2022. Yuan, JJ et al.
Tsinghua Univ, MOE Key Lab Prot Sci, Beijing, Peoples R China; Tsinghua Univ, Sch Life Sci, Beijing, Peoples R China; Beijing Adv Innovat Ctr Struct Biol, Tsinghua Peking Joint Ctr Life Sci, Beijing, Peoples R China
ABSTRACT:DNA wraps around the histone octamer to form nucleosomes(1), the repeating unit of chromatin, which create barriers for accessing genetic information. Snf2-like chromatin remodellers couple the energy of ATP binding and hydrolysis to reposition and recompose the nucleosome, and have vital roles in various chromatin-based transactions(2,3). Here we report the cryo-electron microscopy structure of the 12-subunit human chromatin-remodelling polybromo-associated BRG1-associated factor (PBAF) complex bound to the nucleosome. The motor subunit SMARCA4 engages the nucleosome in the active conformation, which reveals clustering of multiple disease-associated mutations at the interfaces that are essential for chromatin-remodelling activity. SMARCA4 recognizes the H2A-H2B acidic pocket of the nucleosome through three arginine anchors of the Snf2 ATP coupling (SnAc) domain. PBAF shows notable functional modularity, and most of the auxiliary subunits are interwoven into three lobe-like submodules for nucleosome recognition. The PBAF-specific auxiliary subunit ARID2 acts as the structural core for assembly of the DNA-binding lobe, whereas PBRM1, PHF10 and BRD7 are collectively incorporated into the lobe for histone tail binding. Together, our findings provide mechanistic insights into nucleosome recognition by PBAF and a structural basis for understanding SMARCA4-related human diseases.
Use: pLink
Nature Structural & Molecular Biology2022. Rengachari, S et al.
Inst Canc Res, Div Struct Biol, London, England; Human Technopole, Milan, Italy; Max Planck Inst Multidisciplinary Sci, Dept Mol Biol, Gottingen, Germany
ABSTRACT:Rengachari et al. provide a structural investigation of Pol II initiation at snRNA gene promoters and find that the snRNA-activating protein complex enables DNA opening and transcription initiation independent of TFIIE and TFIIH in vitro.RNA polymerase II (Pol II) carries out transcription of both protein-coding and non-coding genes. Whereas Pol II initiation at protein-coding genes has been studied in detail, Pol II initiation at non-coding genes, such as small nuclear RNA (snRNA) genes, is less well understood at the structural level. Here, we study Pol II initiation at snRNA gene promoters and show that the snRNA-activating protein complex (SNAPc) enables DNA opening and transcription initiation independent of TFIIE and TFIIH in vitro. We then resolve cryo-EM structures of the SNAPc-containing Pol IIpre-initiation complex (PIC) assembled on U1 and U5 snRNA promoters. The core of SNAPc binds two turns of DNA and recognizes the snRNA promoter-specific proximal sequence element (PSE), located upstream of the TATA box-binding protein TBP. Two extensions of SNAPc, called wing-1 and wing-2, bind TFIIA and TFIIB, respectively, explaining how SNAPc directs Pol II to snRNA promoters. Comparison of structures of closed and open promoter complexes elucidates TFIIH-independent DNA opening. These results provide the structural basis of Pol II initiation at non-coding RNA gene promoters.
Use: pLink
PNAS2022. Su, JY et al.
Southern Univ Sci & Technol, Dept Biol, Shenzhen 518055, Guangdong, Peoples R China; Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, Beijing Frontier Res Ctr Biol Struct, State Key Lab Membrane Biol,Sch Life Sci, Beijing 100084, Peoples R China
ABSTRACT:Mitochondrial preproteins synthesized in cytosol are imported into mitochondria by a multisubunit translocase of the outer membrane (TOM) complex. Functioned as the receptor, the TOM complex components, Tom 20, Tom22, and Tom70, recognize the presequence and further guide the protein translocation. Their deficiency has been linked with neurodegenerative diseases and cardiac pathology. Although several structures of the TOM complex have been reported by cryoelectron microscopy (cryo-EM), how Tom22 and Tom20 function as TOM receptors remains elusive. Here we determined the structure of TOM core complex at 2.53 angstrom and captured the structure of the TOM complex containing Tom22 and Tom20 cytosolic domains at 3.74 angstrom. Structural analysis indicates that Tom20 and Tom22 share a similar three-helix bundle structural feature in the cytosolic domain Further structure-guided biochemical analysis reveals that the Tom22 cytosolic domain is responsible for binding to the presequence, and the helix H1 is critical for this binding. Altogether, our results provide insights into the functional mechanism of the TOM complex recognizing and transferring preproteins across the mitochondrial membrane.
Use: pLink
Nature communications2022. Fischer, ES et al.
MRC Lab Mol Biol, Cambridge Biomed Campus,Francis Crick Ave, Cambridge CB2 0QH, England
ABSTRACT:Formation of the mitotic checkpoint complex (MCC) is catalysed by a phosphorylation-dependent scaffold. This work provides structural details of how a tripartite Mad1:Bub1:Cdc20 complex presents Cdc20 to Mad2, triggering open-to-closed conversion of Mad2 to assemble the MCC.In response to improper kinetochore-microtubule attachments in mitosis, the spindle assembly checkpoint (SAC) assembles the mitotic checkpoint complex (MCC) to inhibit the anaphase-promoting complex/cyclosome, thereby delaying entry into anaphase. The MCC comprises Mad2:Cdc20:BubR1:Bub3. Its assembly is catalysed by unattached kinetochores on a Mad1:Mad2 platform. Mad1-bound closed-Mad2 (C-Mad2) recruits open-Mad2 (O-Mad2) through self-dimerization. This interaction, combined with Mps1 kinase-mediated phosphorylation of Bub1 and Mad1, accelerates MCC assembly, in a process that requires O-Mad2 to C-Mad2 conversion and concomitant binding of Cdc20. How Mad1 phosphorylation catalyses MCC assembly is poorly understood. Here, we characterized Mps1 phosphorylation of Mad1 and obtained structural insights into a phosphorylation-specific Mad1:Cdc20 interaction. This interaction, together with the Mps1-phosphorylation dependent association of Bub1 and Mad1, generates a tripartite assembly of Bub1 and Cdc20 onto the C-terminal domain of Mad1 (Mad1(CTD)). We additionally identify flexibility of Mad1:Mad2 that suggests how the Cdc20:Mad1(CTD) interaction brings the Mad2-interacting motif (MIM) of Cdc20 near O-Mad2. Thus, Mps1-dependent formation of the MCC-assembly scaffold functions to position and orient Cdc20 MIM near O-Mad2, thereby catalysing formation of C-Mad2:Cdc20.
Use: pLink
Nature Plants2022. Yu, GM et al.
Umea Univ, Dept Plant Physiol, Umea Plant Sci Ctr UPSC, Umea, Sweden; Chinese Acad Sci, Inst Biophys, CAS Ctr Excellence Biomacromol, Natl Lab Biomacromol, Beijing, Peoples R China
ABSTRACT:Genetic, biochemical and high-resolution structural studies of chloroplast protein SOQ1 reveal the existence of a C-terminal lumenal domain with potential redox function and its essential role for suppressing photoprotection in plants.Non-photochemical quenching (NPQ) plays an important role for phototrophs in decreasing photo-oxidative damage. qH is a sustained form of NPQ and depends on the plastid lipocalin (LCNP). A thylakoid membrane-anchored protein SUPPRESSOR OF QUENCHING1 (SOQ1) prevents qH formation by inhibiting LCNP. SOQ1 suppresses qH with its lumen-located thioredoxin (Trx)-like and NHL domains. Here we report structural data, genetic modification and biochemical characterization of Arabidopsis SOQ1 lumenal domains. Our results show that the Trx-like and NHL domains are associated together, with the cysteine motif located at their interface. Residue E859, required for SOQ1 function, is pivotal for maintaining the Trx-NHL association. Importantly, the C-terminal region of SOQ1 forms an independent beta-stranded domain that has structural homology to the N-terminal domain of bacterial disulfide bond protein D and is essential for negative regulation of qH. Furthermore, SOQ1 is susceptible to cleavage at the loops connecting the neighbouring lumenal domains both in vitro and in vivo, which could be a regulatory process for its suppression function of qH.
Use: pLink
Autophagy2022. Qin, X et al.
Pingshan Translat Med Ctr, Shenzhen Bay Lab, Shenzhen, Peoples R China; Peking Univ, Sch Chem Biol & Biotechnol, State Key Lab Chem Oncogen, Shenzhen Grad Sch, Shenzhen, Peoples R China; Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Inst Biopharmaceut & Hlth Engn, Shenzhen, Peoples R China
ABSTRACT:The mitochondrial-anchored deubiquitinating enzyme USP30 (ubiquitin specific peptidase 30) antagonizes PRKN/parkin-mediated mitophagy, making it a potential target for treating Parkinson disease. However, few inhibitors targeting USP30 have been reported. Here, we report a novel peptide (Q14) derived from the transmembrane (TM) domain of USP30 that can target mitochondrial-anchored USP30 directly and increase mitophagy through two intriguing and distinct mechanisms: a novel autoinhibition mechanism in USP30 and accelerated autophagosome formation via the LC3-interacting region (LIR) of the Q14 peptide. We identified the potential binding sites between the Q14 peptide and USP30 and postulated that an allosteric autoinhibition mechanism regulates USP30 activity. Furthermore, the LIR motif in the Q14 peptide offers additional binding with LC3 and accelerated autophagosome formation. The two mechanisms synergistically enhance mitophagy. Our work provides novel insight and direction to the design of inhibitors for USP30 or other deubiquitinating enzymes (DUBs).
Use: pLink
Nature communications2022. Levina, A et al.
Max Perutz Labs, Dept Struct & Computat Biol, Campus Vienna Bioctr 5, A-1030 Vienna, Austria; Med Univ Vienna, Dept Med Biochem, A-1090 Vienna, Austria
ABSTRACT:3-phosphoinositide-dependent kinase 1 (PDK1) is an essential serine/threonine protein kinase, which plays a crucial role in cell growth and proliferation. It is often referred to as a 'master' kinase due to its ability to activate at least 23 downstream protein kinases implicated in various signaling pathways. In this study, we have elucidated the mechanism of phosphoinositide-driven PDK1 auto-activation. We show that PDK1 trans-autophosphorylation is mediated by a PIP3-mediated face-to-face dimer. We report regulatory motifs in the kinase-PH interdomain linker that allosterically activate PDK1 autophosphorylation via a linker-swapped dimer mechanism. Finally, we show that PDK1 is autoinhibited by its PH domain and that positive cooperativity of PIP3 binding drives switch-like activation of PDK1. These results imply that the PDK1-mediated activation of effector kinases, including Akt, PKC, Sgk, S6K and RSK, many of whom are not directly regulated by phosphoinositides, is also likely to be dependent on PIP3 or PI(3,4)P-2.The essential protein kinase PDK1 is activated by phospoinositide-mediated dimerization and trans-autophosphorylation. Here, the authors show that in the absence of PIP3 or PI(3,4)P-2 phosphoinositides, PDK1 is maintained in an inactive, autoinhibited conformation in the cytosol.
Use: pLink
Nucleic Acids Research2022. Yi, Sung-Hui et al.
Max Planck Inst Multidisciplinary Sci, Dept Struct Dynam, D-37077 Gottingen, Germany; Georg August Univ Gottingen, Inst Microbiol & Genet, Dept Mol Struct Biol, D-37077 Gottingen, Germany
ABSTRACT:Selection of the translation start codon is a key step during protein synthesis in human cells. We obtained cryo-EM structures of human 48S initiation complexes and characterized the intermediates of codon recognition by kinetic methods using eIF1A as a reporter. Both approaches capture two distinct ribosome populations formed on an mRNA with a cognate AUG codon in the presence of eIF1, eIF1A, eIF2-GTP-Met-tRNA(i)(Met) and eIF3. The 'open' 40S subunit conformation differs from the human 48S scanning complex and represents an intermediate preceding the codon recognition step. The 'closed' form is similar to reported structures of complexes from yeast and mammals formed upon codon recognition, except for the orientation of eIF1A, which is unique in our structure. Kinetic experiments show how various initiation factors mediate the population distribution of open and closed conformations until 60S subunit docking. Our results provide insights into the timing and structure of human translation initiation intermediates and suggest the differences in the mechanisms of start codon selection between mammals and yeast.
Use: pLink
Analytical Chemistry2022. Gao, H et al.
Chinese Acad Sci, CAS Key Lab Separat Sci Analyt Chem, Natl Chromatog R&A Ctr, Dalian Inst Chem Phys, Dalian 116023, Liaoning, Peoples R China
ABSTRACT:Chemical crosslinking coupled with mass spectrometry (CXMS) has emerged as a powerful technique to obtain the dynamic conformations and interaction interfaces of protein complexes. Limited by the poor cell membrane permeability, chemical reactivity, and biocompatibility of crosslinkers, in vivo crosslinking to capture the dynamics of protein complexes with finer temporal resolution and higher coverage is attractive but challenging. In this work, a trifunctional crosslinker bis(succinimidyl) with propargyl tag (BSP), involving compact size, proper amphipathy, and enrichment capacity, was developed to enable better cell membrane permeability and efficient crosslinking in 5 min without obvious cellular interference. Followed by a two-step enrichment method based on click chemistry at the peptide level, 13,098 crosslinked peptides (5068 inter-crosslinked peptides and 8030 intra-crosslinked peptides) were identified under the data threshold of peptide-spectrum matches (PSMs) >= 2 on the basic of the FDR control of 1%, which was the most comprehensive dataset for homo species cells by a non-cleavable crosslinker. Besides, the interactome network comprising 1519 proteins connected by 2913 interaction edges in various intracellular compartments, as well as 80S ribosome structural dynamics, were characterized, showing the great potential of our in vivo crosslinking approach in minutes. All these results demonstrated that our developed BSP could provide a valuable toolkit for the in-depth in vivo analysis of protein-protein interactions (PPIs) and protein architectures with finer temporal resolution.
Use: pLink