pFind Studio: a computational solution for mass spectrometry-based proteomics



2022




FBB18 participates in preassembly of almost all axonemal dyneins independent of R2TP complex
PLoS genetics2022. Wang, LM et al. Qingdao Natl Lab Marine Sci & Technol, Lab Marine Biol & Biotechnol, Qingdao, Shandong, Peoples R China; Tsinghua Univ, Sch Life Sci, MOE Key Lab Prot Sci, Beijing, Peoples R China
ABSTRACT:Assembly of dynein arms requires cytoplasmic processes which are mediated by dynein preassembly factors (DNAAFs). CFAP298, which is conserved in organisms with motile cilia, is required for assembly of dynein arms but with obscure mechanisms. Here, we show that FBB18, a Chlamydomonas homologue of CFAP298, localizes to the cytoplasm and functions in folding/stabilization of almost all axonemal dyneins at the early steps of dynein preassembly. Mutation of FBB18 causes no or short cilia accompanied with partial loss of both outer and inner dynein arms. Comparative proteomics using N-15 labeling suggests partial degradation of almost all axonemal dynein heavy chains (DHCs). A mutant mimicking a patient variant induces particular loss of DHC alpha. FBB18 associates with 9 DNAAFs and 14 out of 15 dynein HCs but not with IC1/IC2. FBB18 interacts with RuvBL1/2, components of the HSP90 co-chaperone R2TP complex but not the holo-R2TP complex. Further analysis suggests simultaneous formation of multiple DNAAF complexes involves dynein folding/stability and thus provides new insights into axonemal dynein preassembly.
Use: pFind



Cryo-EM structure of the human CST--Pol$\alpha$/primase complex in a recruitment state
Nature Structural & Molecular Biology2022. Cai, Sarah W. et al. Rockefeller Univ, Lab Mol Electron Microscopy, New York, NY 10065 USA; Rockefeller Univ, Lab Cell Biol & Genet, New York, NY 10065 USA
ABSTRACT:The CST-Pol alpha/primase complex is essential for telomere maintenance and functions to counteract resection at double-strand breaks. We report a 4.6-angstrom resolution cryo-EM structure of human CST-Pol alpha/primase, captured prior to catalysis in a recruitment state stabilized by chemical cross-linking. Our structure reveals an evolutionarily conserved interaction between the C-terminal domain of the catalytic POLA1 subunit and an N-terminal expansion in metazoan CTC1. Cross-linking mass spectrometry and negative-stain EM analysis provide insight into CST binding by the flexible POLA1 N-terminus. Finally, Coats plus syndrome disease mutations previously characterized to disrupt formation of the CST-Pol alpha/primase complex map to protein-protein interfaces observed in the recruitment state. Together, our results shed light on the architecture and stoichiometry of the metazoan fill-in machinery.
Use: pFind; pLink



Mirror proteases of Ac-Trypsin and Ac-LysargiNase precisely improve novel event identifications in Mycolicibacterium smegmatis MC2 155 by proteogenomic analysis
Frontiers in Microbiology2022. Jiang, Songhao et al. Hebei Univ, Sch Life Sci, Key Lab Microbial Divers Res & Applicat Hebei, Baoding, Peoples R China; Guangzhou Univ Chinese Med, Clin Med Coll 2, Guangzhou Higher Educ Mega Ctr, Guangzhou, Peoples R China; Chinese Acad Med Sci, Inst Life, Beijing Proteome Res Ctr, Natl Ctr Prot Sci Beijing,State Key Lab Prote,Res, Beijing, Peoples R China; Chinese Acad Med Sci & Peking Union Med Coll, Inst Med Biotechnol, Res Unit Prote & Res & Dev New Drug, Beijing, Peoples R China
ABSTRACT:Accurate identification of novel peptides remains challenging because of the lack of evaluation criteria in large-scale proteogenomic studies. Mirror proteases of trypsin and lysargiNase can generate complementary b/y ion series, providing the opportunity to efficiently assess authentic novel peptides in experiments other than filter potential targets by different false discovery rates (FDRs) ranking. In this study, a pair of in-house developed acetylated mirror proteases, Ac-Trypsin and Ac-LysargiNase, were used in Mycolicibacterium smegmatis MC2 155 for proteogenomic analysis. The mirror proteases accurately identified 368 novel peptides, exhibiting 75-80% b and y ion coverages against 65-68% y or b ion coverages of Ac-Trypsin (38.9% b and 68.3% y) or Ac-LysargiNase (65.5% b and 39.6% y) as annotated peptides from M. smegmatis MC2 155. The complementary b and y ion series largely increased the reliability of overlapped sequences derived from novel peptides. Among these novel peptides, 311 peptides were annotated in other public M. smegmatis strains, and 57 novel peptides with more continuous b and y pairs were obtained for further analysis after spectral quality assessment. This enabled mirror proteases to successfully correct six annotated proteins' N-termini and detect 17 new coding open reading frames (ORFs). We believe that mirror proteases will be an effective strategy for novel peptide detection in both prokaryotic and eukaryotic proteogenomics.
Use: pFind



A Novel Proteogenomic Integration Strategy Expands the Breadth of Neo-Epitope Sources
Cancers2022. Xiang, Haitao et al. BGI Shenzhen, Shenzhen 518103, Peoples R China; Guangdong Prov Key Lab Human Dis Genom, Shenzhen Key Lab Genom, Shenzhen 518083, Peoples R China; BGI, Shenzhen 518083, Peoples R China
ABSTRACT:Simple Summary Tumor-specific antigens are ideal targets for cancer immunotherapy. Mass spectrometry, which is the main method that directly identifies neo-epitopes presented on tumor cells, focuses mainly on peptides derived from annotated protein-coding exomes. However, non-canonical peptides arising from alterations at genomic, transcriptional, and posttranslational levels have been identified in several pioneering studies, making it necessary to develop an integrated proteogenomic approach that can comprehensively identify neoantigens derived from all genomic regions. Our novel strategy combining database searches with a de novo peptide sequencing method accurately identified multiple types of non-canonical peptides in the colorectal cancer cell line, HCT116. This practical proteogenomic strategy can be applied to neoantigen discovery in clinical tumor samples, improving cancer immunotherapy. Tumor-specific antigens can activate T cell-based antitumor immune responses and are ideal targets for cancer immunotherapy. However, their identification is still challenging. Although mass spectrometry can directly identify human leukocyte antigen (HLA) binding peptides in tumor cells, it focuses on tumor-specific antigens derived from annotated protein-coding regions constituting only 1.5% of the genome. We developed a novel proteogenomic integration strategy to expand the breadth of tumor-specific epitopes derived from all genomic regions. Using the colorectal cancer cell line HCT116 as a model, we accurately identified 10,737 HLA-presented peptides, 1293 of which were non-canonical peptides that traditional database searches could not identify. Moreover, we found eight tumor neo-epitopes derived from somatic mutations, four of which were not previously reported. Our findings suggest that this new proteogenomic approach holds great promise for increasing the number of tumor-specific antigen candidates, potentially enlarging the tumor target pool and improving cancer immunotherapy.
Use: pFind



The effect of lactulose thermal degradation products on -lactoglobulin: linear-, loop-, and cross-link structural modifications and reduced digestibility
FOOD CHEMISTRY2022. Dong, L et al. Nankai Univ, Sch Med, Tianjin Key Lab Food Sci & Hlth, Tianjin 300071, Peoples R China
ABSTRACT:The thermal degradation products of lactulose and the interaction between lactulose and beta-lactoglobulin (beta Lg) were investigated in a thermal model system. Lactulose was thermally degraded into fructose and galactose, which were further degraded into methylglyoxal, glyoxal, 3-deoxyglucosone, and 2, 3-butanedione via heating. After incubating with lactulose, the structure of beta Lg was changed, which manifested by the formation of new band with doubled the molecular weight of beta Lg in the mobility spectrum and the changes in the internal fluo-rescence spectrum. Furthermore, the lysine and arginine residues of beta Lg were confirmed to be the modification sites of the thermal degradation products of lactulose, and the modification types of linear-, loop-, and cross -linked were detected. The digestibility of beta Lg incubated with lactulose was significantly decreased due to the modification of trypsin digestion sites and the formation of cross-linked conjunctions. Therefore, the adverse effects of lactulose application in thermally processed foods should be concerned.
Use: pFind; pLink



EGLN1 prolyl hydroxylation of hypoxia-induced transcription factor HIF1$\alpha$ is repressed by SET7-catalyzed lysine methylation
Journal of Biological Chemistry2022. Tang, JH et al. Univ Chinese Acad Sci, Beijing, Peoples R China; Chinese Acad Sci, Innovat Seed Design, Wuhan, Peoples R China; Hubei Hongshan Lab, Wuhan, Peoples R China; Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol & Biotechnol, Wuhan, Peoples R China
ABSTRACT:Egg-laying defective nine 1 (EGLN1) functions as an oxygen sensor to catalyze prolyl hydroxylation of the transcription factor hypoxia-inducible factor-1 alpha under normoxia conditions, leading to its proteasomal degradation. Thus, EGLN1 plays a central role in the hypoxia-inducible factor-mediated hypoxia signaling pathway; however, the posttranslational modifications that control EGLN1 function remain largely unknown. Here, we identified that a lysine monomethylase, SET7, catalyzes EGLN1 methylation on lysine 297, resulting in the repression of EGLN1 activity in catalyzing prolyl hydroxylation of hypoxia-inducible factor-1 alpha. Notably, we demonstrate that the methylation mimic mutant of EGLN1 loses the capability to suppress the hypoxia signaling pathway, leading to the enhancement of cell proliferation and the oxygen consumption rate. Collectively, our data identify a novel modification of EGLN1 that is critical for inhibiting its enzymatic activity and which may benefit cellular adaptation to conditions of hypoxia.
Use: pFind



Identification of Microproteins in Hep3B Cells at Different Cell Cycle Stages
Journal of Proteome Research2022. Li, B et al. Cent China Normal Univ, Sch Life Sci, Wuhan 430079, Hubei, Peoples R China; Cent China Normal Univ, Hubei Key Lab Genet Regulat & Integrat Biol, Wuhan 430079, Hubei, Peoples R China
ABSTRACT:Microproteins are generated from small open reading frames andturn out to play various vital biological functions. As an essential biological event ofeukaryotic cells, the cell cycle is involved in cell replication and division. For such ahighly regulated event, microproteins associated with cell cycle regulation remainedunclarified. Utilizing a combination of bottom-up and top-down proteomics, weanalyzed microproteins at specific cell cycle stages of Hep3B cells. A total of 657microproteins were identified under three cell cycle stages, including 151 in the G0/G1 stage, 163 in the S stage, and 132 in the G2/M stage. The annotation of these microproteins showed their cell cycle-specific functions, such as translation, nuclear assembly,chromatin organization, and the G2/M transition of the mitotic cell cycle. Meanwhile, more than 50% of identified microproteinswere ncRNA-encoded. These nonannotated novel microproteins contain several function domains, such as the nucleosidediphosphate kinase domain, the high mobility group domain, and the DNA-binding domain. This suggested the potential functionsof these novel microproteins in specific cell cycle stages. This study presented a large-scale profile of microproteins at different cellcycle stages from Hep3B and may provide new perspectives on the regulation mechanism of the cell cycle. Liquid chromatography-mass spectrometry data were deposited to ProteomeXchange using the identifier PXD030286.
Use: pFind



Shelterin is a Dimeric Complex with Extensive Structural Heterogeneity
PNAS2022. Zinder, John C. et al. Rockefeller Univ, Lab Cell Biol & Genet, New York, NY 10065 USA; Rockefeller Univ, Lab Mol Elect Microscopy, New York, NY 10065 USA
ABSTRACT:Human shelterin is a six-subunit complex-composed of TRF1, TRF2, Rap1, TIN2, TPP1, and POT1-that binds telomeres, protects them from the DNA-damage response, and regulates the maintenance of telomeric DNA. Although high-resolution structures have been generated of the individual structured domains within shelterin, the architecture and stoichiometry of the full complex are currently unknown. Here, we report the purification of shelterin subcomplexes and reconstitution of the entire complex using full-length, recombinant subunits. By combining negative-stain electron microscopy (EM), cross-linking mass spectrometry (XLMS), AlphaFold modeling, mass photometry, and native mass spectrometry (MS), we obtain stoichiometries as well as domain-scale architectures of shelterin subcomplexes and determine that they feature extensive conformational heterogeneity. For POT1/TPP1 and POT1/TPP1/TIN2, we observe high variability in the positioning of the POT1 DNA-binding domain, the TPP1 oligonucleotide/oligosaccharide-binding (OB) fold, and the TIN2 TRFH domain with respect to the C-terminal domains of POT1. Truncation of unstructured linker regions in TIN2, TPP1, and POT1 did not reduce the conformational variability of the heterotrimer. Shelterin and TRF1-containing subcomplexes form fully dimeric stoichiometries, even in the absence of DNA substrates. Shelterin and its subcomplexes showed extensive conformational variability, regardless of the presence of DNA substrates. We conclude that shelterin adopts a multitude of conformations and argue that its unusual architectural variability is beneficial for its many functions at telomeres.
Use: pLink; pFind



Nitrogen mustard alkylates and cross-links p53 in human keratinocytes
Chemical Research in Toxicology2022. Jan, YH et al. Rutgers State Univ, Sch Publ Hlth, Dept Environm & Occupat Hlth & Justice, Piscataway, NJ 08854 USA
ABSTRACT:Cytotoxic blistering agents such as sulfur mustard and nitrogen mustard (HN2) were synthesized for chemical warfare. Toxicity is due to reactive chloroethyl side chains that modify and damage cellular macromolecules including DNA and proteins. In response to DNA damage, cells initiate a DNA damage response directed at the recruitment and activation of repair-related proteins. A central mediator of the DNA damage response is p53, a protein that plays a critical role in regulating DNA repair. We found that HN2 causes cytosolic and nuclear accumulation of p53 in HaCaT keratinocytes; HN2 also induced post-translational modifications on p53 including S15 phosphorylation and K382 acetylation, which enhance p53 stability, promote DNA repair, and mediate cellular metabolic responses to stress. HN2 also cross-linked p53, forming dimers and high-molecular-weight protein complexes in the cells. Cross-linked multimers were also modified by K48-linked ubiquitination indicating that they are targets for proteasome degradation. HN2-induced modifications transiently suppressed the transcriptional activity of p53. Using recombinant human p53, HN2 alkylation was found to be concentration- and redox status-dependent. Dithiothreitol-reduced protein was more efficiently cross-linked indicating that p53 cysteine residues play a key role in protein modification. LC-MS/MS analysis revealed that HN2 directly alkylated p53 at C124, C135, C141, C176, C182, C275, C277, H115, H178, K132, and K139, forming both monoadducts and cross-links. The formation of intermolecular complexes was a consequence of HN2 cross-linked cysteine residues between two molecules of p53. Together, these data demonstrate that p53 is a molecular target for mustard vesicants. Modification of p53 likely mediates cellular responses to HN2 including DNA repair and cell survival contributing to vesicant-induced cytotoxicity.
Use: pLink



Subcellular interactomes revealed by merging APEX with cross-linking mass spectrometry
Analytical Chemistry2022. Sun, MZ et al. Chinese Inst Brain Res CIBR, Beijing 102206, Peoples R China; Peking Univ, Synthet & Funct Biomol Ctr, Coll Chem & Mol Engn, Dept Chem Biol,Beijing Natl Lab Mol Sci,Key Lab Bi, Beijing 100871, Peoples R China; Inst Canc Res, Shenzhen Bay Lab, Shenzhen 518107, Peoples R China; Peking Univ, Peking Tsinghua Ctr Life Sci, Beijing 100871, Peoples R China; Peking Univ, PKU IDG McGovern Inst Brain Res, Beijing 100871, Peoples R China
ABSTRACT:Subcellular protein-protein interactions (PPIs) are essential to understanding the mechanism of diverse cellular signaling events and the pathogenesis of diseases. Herein, we report an integrated APEX proximity labeling and chemical cross-linking coupled with mass spectrometry (CXMS) platform named APEX-CXMS for spatially resolved subcellular interactome profiling in a high-throughput manner. APEX proximity labeling rapidly captures subcellular proteomes, and the highly reactive chemical cross-linkers can capture weak and dynamic interactions globally without extra genetic manipulation. APEX-CXMS was first applied to mitochondria and identified 653 pairs of interprotein cross-links. Six pairs of new interactions were selected and verified by coimmunoprecipitation, the mammalian two-hybrid system, and surface plasmon resonance method. Besides, our approach was further applied to the nucleus, capturing 336 pairs of interprotein cross-links with approximately 94% nuclear specificity. APEX-CXMS thus provides a simple, fast, and general alternative to map diverse subcellular PPIs.
Use: pLink