pFind Studio: a computational solution for mass spectrometry-based proteomics



2022




Discovery of 194 Unreported Conopeptides and Identification of a New Protein Disulfide Isomerase in Conus caracteristicus Using Integrated Transcriptomic and Proteomic Analysis
Frontiers in Marine Science2022. Zhang, Han et al. Southern Med Univ, Guangdong Prov Key Lab Single Cell Technol & Appl, Guangzhou, Peoples R China; Southern Med Univ, Guangdong Hong Kong Macao Greater Bay Area Ctr Br, Hong Kong, Guangdong, Peoples R China; Southern Med Univ, Sch Basic Med Sci, Dept Biochem & Mol Biol, Guangzhou, Peoples R China
ABSTRACT:Current ConoServer database accumulates 8,134 conopeptides from 122 species of cone snail, which are pharmaceutically attractive marine resource. However, many more conopeptides remain to be discovered, and the enzymes involved in their synthesis and processing are unclear. In this report, firstly we screened and analyzed the differentially expressed genes (DEGs) between venom duct (VD) and venom bulb (VB) of C. caracteristicus, and obtained 3,289 transcripts using a comprehensive assembly strategy. Then using de novo deep transcriptome sequencing and analysis under a strict merit, we discovered 194 previously unreported conopeptide precursors in Conus caracteristicus. Meanwhile, 2 predicted conopeptides from Consort were verified using liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). Furthermore, we demonstrated that both VD and VB of C. caracteristicus secreted hundreds of different conotoxins, which showed a high diversity among individuals of the species. Finally, we identified a protein disulfide isomerase (PDI) gene, which, functioning for intramolecular disulfide-bond folding, was shared among C. caracteristicus, C. textile, and C. bartschi and was the first PDI identified with five thioredoxin domains. Our results provide novel insights and fuel further studies of the molecular evolution and function of the novel conotoxins.
Use: pFind



MetaLab-MAG: A Metaproteomic Data Analysis Platform for Genome-Level Characterization of Microbiomes from the Metagenome-Assembled Genomes Database
Journal of Proteome Research2022. Cheng, Kai et al. Univ Ottawa, Fac Med, Sch Pharmaceut Sci, Ottawa, ON K1H 8M5, Canada
ABSTRACT:The studies of microbial communities have drawn increased attention in various research fields such as agriculture, environment, and human health. Recently, metaproteomics has become a powerful tool to interpret the roles of the community members by investigating the expressed proteins of the microbes. However, analyzing the metaproteomic data sets at genome resolution is still challenging because of the lack of efficient bioinformatics tools. Here we develop MetaLab-MAG, a specially designed tool for the characterization of microbiomes from metagenome-assembled genomes databases. MetaLab-MAG was evaluated by analyzing various human gut microbiota data sets and performed comparably or better than searching the gene catalog protein database directly. MetaLab-MAG can quantify the genome-level microbiota compositions and supports both label-free and isobaric labeling-based quantification strategies. MetaLab-MAG removes the obstacles of metaproteomic data analysis and provides the researchers with in-depth and comprehensive information from the microbiomes.
Use: pFind



Structure of a TOC-TIC supercomplex spanning two chloroplast envelope membranes
CELL2022. Jin, Zeyu et al. Westlake Univ, Sch Life Sci, Key Lab Struct Biol Zhejiang Prov, Hangzhou 310024, Zhejiang, Peoples R China; Westlake Inst Adv Study, Inst Biol, Hangzhou 310024, Zhejiang, Peoples R China; Westlake Lab Life Sci & Biomed, Hangzhou 310024, Zhejiang, Peoples R China
ABSTRACT:The TOC and TIC complexes are essential translocons that facilitate the import of the nuclear genome-en-coded preproteins across the two envelope membranes of chloroplast, but their exact molecular identities and assembly remain unclear. Here, we report a cryoelectron microscopy structure of TOC-TIC supercom-plex from Chlamydomonas, containing a total of 14 identified components. The preprotein-conducting pore of TOC is a hybrid b-barrel co-assembled by Toc120 and Toc75, while the potential translocation path of TIC is formed by transmembrane helices from Tic20 and YlmG, rather than a classic model of Tic110. A rigid intermembrane space (IMS) scaffold bridges two chloroplast membranes, and a large hydro-philic cleft on the IMS scaffold connects TOC and TIC, forming a pathway for preprotein translocation. Our study provides structural insights into the TOC-TIC supercomplex composition, assembly, and preprotein translocation mechanism, and lays a foundation to interpret the evolutionary conservation and diversity of this fundamental translocon machinery.
Use: pFind; pLink



Assessing the dark field of metaproteome
Analytical Chemistry2022. Duan, Haonan et al. Univ Ottawa, Fac Med, Daniel Figeys Sch Pharmaceut Sci, Ottawa, ON K1H 8L1, Canada; Univ Ottawa, Ottawa Inst Syst Biol, Ottawa, ON K1H 8L1, Canada
ABSTRACT:The human gut microbiome is a complex system composed of hundreds of species, and metaproteomics can be used to explore their expressed functions. However, many lower abundance species are not detected by current metaproteomic techniques and represent the dark field of metaproteomics. We do not know the minimal abundance of a bacterium in a microbiome-(depth) that can be detected by shotgun metaproteomics. In this study, we spiked 15N-labeled E. coli peptides at different percentages into peptides mixture derived from the human gut microbiome to evaluate the depth that can be achieved by shotgun metaproteomics. We observed that the number of identified peptides and peptide intensity from 15N-labeled E. coli were linearly correlated with the spike-in levels even when 15N-labeled E. coli was down to 0.5% of the biomass. Below that level, it was not detected. Interestingly, the match-between-run strategy significantly increased the number of quantified peptides even when 15N-labeled E. coli peptides were at low abundance. This is indicative that in metaproteomics of complex gut microbiomes many peptides from low abundant species are likely observable in MS1 but are not selected for MS2 by standard shotgun strategies.
Use: pFind



Changes to Urinary Proteome in High-Fat-Diet ApoE-/- Mice
Biomolecules2022. Hua, Yuanrui et al. Beijing Normal Univ, Coll Life Sci, Gene Engn Drug & Biotechnol Beijing Key Lab, Beijing 100875, Peoples R China
ABSTRACT:Cardiovascular disease is currently the leading cause of death worldwide. Atherosclerosis is an important pathological basis of cardiovascular disease, and its early diagnosis is of great significance. Urine bears no need nor mechanism to be stable, so it accumulates many small changes and is therefore a good source of biomarkers in the early stages of disease. In this study, ApoE-/- mice were fed a high-fat diet for 5 months. Urine samples from the experimental group and control group (C57BL/6 mice fed a normal diet) were collected at seven time points. Proteomic analysis was used for comparison within the experimental group and for comparison between the experimental group and the control group. The results of the comparison within the experimental group showed a significant difference in the urinary proteome before and after a one-week high-fat diet, and several of the differential proteins have been reported to be associated with atherosclerosis and/or as biomarker candidates. The results of the comparison between the experimental group and the control group indicated that the biological processes enriched by the GO analysis of the differential proteins correspond to the progression of atherosclerosis. The differences in chemical modifications of urinary proteins have also been reported to be associated with the disease. This study demonstrates that urinary proteomics has the potential to sensitively monitor changes in the body and provides the possibility of identifying early biomarkers of atherosclerosis.
Use: pFind



The cytosolic thiol peroxidase PRXIIB is an intracellular sensor for H2O2 that regulates plant immunity through a redox relay
NATURE PLANTS2022. Bi, Guozhi et al. Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Plant Genom, Beijing, Peoples R China; Hainan Yazhou Bay Seed Lab, Sanya, Peoples R China; Univ Chinese Acad Sci, Coll Adv Agr Sci, Beijing, Peoples R China; Univ Chinese Acad Sci, CAS Ctr Excellence Biot Interact, Beijing, Peoples R China; Beijing Inst Life, Natl Ctr Prot Sci, Beijing Proteome Res Ctr, State Key Lab Prote, Beijing, Peoples R China
ABSTRACT:Rapid production of H2O2 is a hallmark of plant responses to diverse pathogens and plays a crucial role in signalling downstream of various receptors that perceive immunogenic patterns. However, mechanisms by which plants sense H2O2 to regulate immunity remain poorly understood. We show that endogenous H2O2 generated upon immune activation is sensed by the thiol peroxidase PRXIIB via oxidation at Cys51, and this is essential for stomatal immunity against Pseudomonas syringae. We further show that in immune-stimulated cells, PRXIIB conjugates via Cys51 with the type 2C protein phosphatase ABA insensitive 2 (ABI2), subsequently transducing H2O2 signal to ABI2. This oxidation dramatically sensitizes H2O2-mediated inhibition of the ABI2 phosphatase activity in vitro and is required for stomatal immunity in plants. Together, our results illustrate a redox relay, with PRXIIB as a sensor for H2O2 and ABI2 as a target protein, that mediates reactive oxygen species signalling during plant immunity.
Use: pFind; pQuant



PBC, an easy and efficient strategy for high-throughput protein C-terminome profiling
Frontiers in Cell and Developmental Biology2022. Zhai, Linhui et al. Chinese Acad Sci, Shanghai Inst Mat Med, State Key Lab Drug Res, Shanghai, Peoples R China; Nanjing Univ Chinese Med, Sch Pharm, Jiangsu Key Lab Funct Subst Chinese Med, Nanjing, Jiangsu, Peoples R China; Nanjing Univ Chinese Med, Sch Chinese Mat Med, Sch Pharm, Nanjing, Jiangsu, Peoples R China
ABSTRACT:High-throughput profiling of protein C-termini is still a challenging task. Proteomics provides a powerful technology for systematic and high-throughput study of protein C-termini. Various C-terminal peptide enrichment strategies based on chemical derivatization and chromatography separation have been reported. However, they are still costly and time-consuming, with low enrichment efficiency for C-terminal peptides. In this study, by taking advantage of the high reaction selectivity of 2-pyridinecarboxaldehyde (2-PCA) with an alpha-amino group on peptide N-terminus and high affinity between biotin and streptavidin, we developed a 2-PCA- and biotin labeling-based C-terminomic (PBC) strategy for a high-efficiency and high-throughput analysis of protein C-terminome. Triplicates of PBC experiments identified a total of 1,975 C-terminal peptides corresponding to 1,190 proteins from 293 T cell line, which is 180% higher than the highest reported number of C-terminal peptides identified from mammalian cells by chemical derivatization-based C-terminomics study. The enrichment efficiency (68%) is the highest among the C-terminomics methods currently reported. In addition, we not only uncovered 50 proteins with truncated C-termini which were significantly enriched in extracellular exosome, vesicle, and ribosome by a bioinformatic analysis but also systematically characterized the whole PTMs on C-terminal in 293 T cells, suggesting PBC as a powerful tool for protein C-terminal degradomics and PTMs investigation. In conclusion, the PBC strategy would benefit high-efficiency and high-throughput profiling of protein C-terminome.
Use: pFind



Many kinds of oxidized proteins are present more in the urine of the elderly
Clinical proteomics2022. Liu, YT et al. Beijing Normal Univ, Dept Biochem & Mol Biol, Beijing Key Lab Gene Engn Drug & Biotechnol, Beijing 100875, Peoples R China
ABSTRACT:Background Many studies have shown an association between aging and oxidation. To our knowledge, there have been no studies exploring aging-related urine proteome modifications. The purpose of this study was to explore differences in global chemical modifications of urinary protein at different ages. Methods Discovery (n=38) cohort MS data including children, young and old groups were downloaded from three published studies, and this data was analyzed using open-pFind for identifying modifications. Verification cohort human samples (n=28) including young, middle-aged, and old groups, rat samples (n=7) at three-time points after birth, adulthood, and old age were collected and processed in the laboratory simultaneously based on label-free quantification combined with pFind. Results Discovery cohort: there were 28 kinds of differential oxidations in the old group that were higher than those in the young or children group in. Verification cohort: there were 17 kinds of differential oxidations of 49 oxidized proteins in the middle and old groups, which were significantly higher than those in the young group. Both oxidations and oxidized proteins distinguished different age groups well. There were also 15 kinds of differential oxidations in old age higher than others in the rat cohort. The results showed that the validation experiment was basically consistent with the results of the discovery experiment, showing that the level of oxidized proteins in urine increased significantly with age. Conclusions Our study is the first to show that oxidative proteins occur in urine and that oxidations are higher in older than younger ages. Perhaps improving the degree of excretion of oxidative protein in vivo through the kidney is helpful for maintaining the homeostasis of the body's internal environment, delaying aging and the occurrence of senile diseases.
Use: pFind; pLink; pQuant



PML Body Component Sp100A Is a Cytosolic Responder to IFN and Activator of Antiviral ISGs
Mbio2022. Dong, HC et al. Sun Yat Sen Univ, Key Lab Trop Dis Control, Minist Educ, Guangzhou, Peoples R China; Sun Yat Sen Univ, Ctr Infect & Immun Studies, Sch Med, Shenzhen, Peoples R China
ABSTRACT:PML bodies sit at the center stage of various important biological processes; however, the signal transduction networks of these macromolecular protein complexes remain enigmatic. The present study illustrates, in detail and for the first time, the course of signal receiving, processing, and implementation by PML bodies in response to IFN and virus infection.Promyelocytic leukemia protein (PML) bodies are implicated in one of the key pathways in the establishment of antiviral status in response to interferon (IFN), yet the molecular mechanisms bridging the cross talk remain elusive. Herein, we report that a major constitutive component of the PML body, Sp100A, is ubiquitously located in the cytosol of various cell types and is an immediate responder to multiple extracellular stimuli, including virus infection, IFN, epidermal growth factor (EGF), glial cell-derived nerve factor (GDNF), etc., signaling through the phosphatidylinositol 3-kinase (PI3K) pathway. IFN-beta induces phosphorylation of Sp100A on Ser(188), which fortifies the binding of Sp100A to pyruvate kinase 2 (PKM2) and facilitates its nuclear importation through the extracellular signal-regulated kinase 1/2 (ERK1/2)-PKM2-PIN1-importin axes. Blocking PI3K pathway signaling or interference with the ERK1/2-PKM2-PIN1-importin axes independently hampers nuclear translocation of Sp100A in response to IFN, reflecting a dual-regulation mechanism governing this event. In the nucleus, Sp100A is enriched in the promoter regions of essential antiviral interferon-stimulated genes (ISGs), such as those coding for IFI16, OAS2, and RIG-I, and activates their transcription. Importantly, nuclear importation of Sp100A, but not accumulation of a mutant Sp100A that failed to respond to IFN, during infection potently enhanced transcription of these antiviral ISGs and restricted virus propagation. These findings depict a novel IFN response mechanism by PML bodies in the cytosol and shed light on the complex sensing-regulatory network of PML bodies.IMPORTANCE PML bodies sit at the center stage of various important biological processes; however, the signal transduction networks of these macromolecular protein complexes remain enigmatic. The present study illustrates, in detail and for the first time, the course of signal receiving, processing, and implementation by PML bodies in response to IFN and virus infection. It shows that PML body constitutive component Sp100A was phosphorylated on Ser(188) by IFN signaling through the PI3K pathway in the cytosol, cotranslocated into the nucleus with PKM2, enriched on the promoter regions of essential antiviral ISGs such as those coding for IFI16, RIG-I, OAS2, etc., and mediating their transcriptional activation.
Use: pFind



The effect of lactulose thermal degradation products on $\beta$-lactoglobulin: Linear-, loop-, and cross-link structural modifications and reduced digestibility
FOOD CHEMISTRY2022. Dong, L et al. Nankai Univ, Sch Med, Tianjin Key Lab Food Sci & Hlth, Tianjin 300071, Peoples R China
ABSTRACT:The thermal degradation products of lactulose and the interaction between lactulose and beta-lactoglobulin (beta Lg) were investigated in a thermal model system. Lactulose was thermally degraded into fructose and galactose, which were further degraded into methylglyoxal, glyoxal, 3-deoxyglucosone, and 2, 3-butanedione via heating. After incubating with lactulose, the structure of beta Lg was changed, which manifested by the formation of new band with doubled the molecular weight of beta Lg in the mobility spectrum and the changes in the internal fluo-rescence spectrum. Furthermore, the lysine and arginine residues of beta Lg were confirmed to be the modification sites of the thermal degradation products of lactulose, and the modification types of linear-, loop-, and cross -linked were detected. The digestibility of beta Lg incubated with lactulose was significantly decreased due to the modification of trypsin digestion sites and the formation of cross-linked conjunctions. Therefore, the adverse effects of lactulose application in thermally processed foods should be concerned.
Use: pFind; pLink