pFind Studio: a computational solution for mass spectrometry-based proteomics



2020




Mapping the native interaction surfaces of PREP1 with PBX1 by cross-linking mass-spectrometry and mutagenesis
Scientific Reports2020. Bruckmann, C et al. IFOM Fdn FIRC, Inst Mol Oncol, Via Adamello 16, I-20139 Milan, Italy.
ABSTRACT:Both onco-suppressor PREP1 and the oncogene MEIS1 bind to PBX1. This interaction stabilizes the two proteins and allows their translocation into the nucleus and thus their transcriptional activity. Here, we have combined cross-linking mass-spectrometry and systematic mutagenesis to detail the binding geometry of the PBX1-PREP1 (and PBX1-MEIS1) complexes, under native in vivo conditions. The data confirm the existence of two distinct interaction sites within the PBC domain of PBX1 and unravel differences among the highly similar binding sites of MEIS1 and PREP1. The HR2 domain has a fundamental role in binding the PBC-B domain of PBX1 in both PREP1 and MEIS1. The HR1 domain of MEIS1, however, seem to play a less stringent role in PBX1 interaction with respect to that of PREP1. This difference is also reflected by the different binding affinity of the two proteins to PBX1. Although partial, this analysis provides for the first time some ideas on the tertiary structure of the complexes not available before. Moreover, the extensive mutagenic analysis of PREP1 identifies the role of individual hydrophobic HR1 and HR2 residues, both in vitro and in vivo.
Use: pLink



Defining the architecture of the human TIM22 complex by chemical crosslinking
FEBS Letters2020. Valpadashi, A et al. Univ Med Ctr Gottingen, Dept Cellular Biochem, Humboldtallee 23, D-37073 Gottingen, Germany.
ABSTRACT:The majority of mitochondrial proteins are nuclear encoded and imported into mitochondria as precursor proteins via dedicated translocases. The translocase of the inner membrane 22 (TIM22) is a multisubunit molecular machine specialized for the translocation of hydrophobic, multi-transmembrane-spanning proteins with internal targeting signals into the inner mitochondrial membrane. Here, we undertook a crosslinking-mass spectrometry (XL-MS) approach to determine the molecular arrangement of subunits of the human TIM22 complex. Crosslinking of the isolated TIM22 complex using the BS3 crosslinker resulted in the broad generation of crosslinks across the majority of TIM22 components, including the small TIM chaperone complex. The crosslinking data uncovered several unexpected features, opening new avenues for a deeper investigation into the steps required for TIM22-mediated translocation in humans.
Use: pLink



Molecular topology of RNA polymerase I upstream activation factor
Molecular and Cellular Biology2020. Knutson, BA et al. SUNY Upstate Med Univ, Dept Biochem & Mol Biol, Syracuse, NY 13210 USA.
ABSTRACT:Upstream activation factor (UAF) is a multifunctional transcription factor in Saccharomyces cerevisiae that plays dual roles in activating RNA polymerase I (Pol I) transcription and repression of Pol II. For Pol I, UAF binds to a specific upstream element in the ribosomal DNA (rDNA) promoter and interacts with two other Pol I initiation factors, the TATA-binding protein (TBP) and core factor (CF). We used an integrated combination of chemical cross-linking mass spectrometry (CXMS), molecular genetics, protein biochemistry, and structural modeling to understand the topological framework responsible for UAF complex formation. Here, we report the molecular topology of the UAF complex, describe new structural and functional domains that play roles in UAF complex integrity, assembly, and biological function, and provide roles for previously identified UAF domains that include the Rrn5 SANT and histone fold domains. We highlight the role of new domains in Uaf30 that include an N-terminal winged helix domain and a disordered tethering domain as well as a BORCS6-like domain found in Rrn9. Together, our results reveal a unique network of topological features that coalesce around a histone tetramer-like core to form the dual-function UAF complex.
Use: pLink



OpenPepXL: An open-source tool for sensitive identification of cross-linked peptides in XL-MS
Molecular & Cellular Proteomics2020. Netz, E et al. Max Planck Inst Dev Biol, Biomol Interact, Tubingen, Germany.
ABSTRACT:XL-MS has been recognized as an effective source of information about protein structures and interactions. OpenPepXL is a sensitive XL-MS identification software that reports from 7% to 40% more structurally validated cross-links than other tools on data sets with available high-resolution structures for cross-link validation. It is open source and has been built as part of the OpenMS suite of tools. OpenPepXL supports all common operating systems and open data formats. Cross-linking MS (XL-MS) has been recognized as an effective source of information about protein structures and interactions. In contrast to regular peptide identification, XL-MS has to deal with a quadratic search space, where peptides from every protein could potentially be cross-linked to any other protein. To cope with this search space, most tools apply different heuristics for search space reduction. We introduce a new open-source XL-MS database search algorithm, OpenPepXL, which offers increased sensitivity compared with other tools. OpenPepXL searches the full search space of an XL-MS experiment without using heuristics to reduce it. Because of efficient data structures and built-in parallelization OpenPepXL achieves excellent runtimes and can also be deployed on large compute clusters and cloud services while maintaining a slim memory footprint. We compared OpenPepXL to several other commonly used tools for identification of noncleavable labeled and label-free cross-linkers on a diverse set of XL-MS experiments. In our first comparison, we used a data set from a fraction of a cell lysate with a protein database of 128 targets and 128 decoys. At 5% FDR, OpenPepXL finds from 7% to over 50% more unique residue pairs (URPs) than other tools. On data sets with available high-resolution structures for cross-link validation OpenPepXL reports from 7% to over 40% more structurally validated URPs than other tools. Additionally, we used a synthetic peptide data set that allows objective validation of cross-links without relying on structural information and found that OpenPepXL reports at least 12% more validated URPs than other tools. It has been built as part of the OpenMS suite of tools and supports Windows, macOS, and Linux operating systems. OpenPepXL also supports the MzIdentML 1.2 format for XL-MS identification results. It is freely available under a three-clause BSD license at .
Use: pLink



Vaccinia virus immunomodulator A46: destructive interactions with MAL and MyD88 Shown by negative-stain electron microscopy
Structure2020. Azar, DF et al. Med Univ Vienna, Vienna Bioctr, Max Perutz Labs, Dr Bohr Gasse 9-3, A-1030 Vienna, Austria.
ABSTRACT:Vaccinia virus A46 is an anti-inflammatory and non-anti-apoptotic, two-domain member of the poxviral Bcl-2-like protein family that inhibits the cellular innate immune response at the level of the Toll/interleukin-1 receptor (TIR) domain-containing TLR adaptor proteins MAL, MyD88, TRAM, and TRIF. The mechanism of interaction of A46 with its targets has remained unclear. The TIR domains of MAL and MyD88 have been shown to signal by forming filamentous assemblies. We show a clear concentration-dependent destruction of both of these assemblies by A46 by means of negative-stain electron microscopy from molar ratios of 1:15 for MAL and 1:30 for MyD88. Using targeted mutagenesis and protein-protein crosslinking, we show that A46 interacts with MAL and MyD88 through several facets, including residues on helices alpha 1 and alpha 7 and the C-terminal flexible region. We propose a model in which A46 targets the MAL and MyD88 signalosome intra-strand interfaces and gradually destroys their assemblies in a concentration-dependent manner.
Use: pLink



Evidence of allosteric coupling between substrate binding and Adx recognition in the vitamin D carbon-24 hydroxylase CYP24A1
Biochemistry2020. Kumar, A et al. Univ Buffalo, Jacobs Sch Med, Dept Biochem, Buffalo, NY 14203 USA.
ABSTRACT:Metabolic inactivation of 1,25(OH)2D3 requires molecular recognition between the mitochondrial enzyme cytochrome P450 24A1 (CYP24A1) and its cognate redox partner adrenodoxin (Adx). Recent evidence supports a model of CYP24A1 function in which substrate binding and Adx recognition are structurally linked. However, the details of this allosteric connection are not clear. In this study, we utilize chemical cross-linking coupled to mass spectrometry, nuclear magnetic resonance (NMR) spectroscopy, and CYP24A1 functional assays to inform a working model of a CYP24A1Adx complex. We report that differential cross-linking internal to CYP24A1 points toward an Adx-induced conformational change that perturbs the F and G helices, which are required for substrate binding. Moreover, the modeled complex suggests that a semiconserved nonpolar interaction at the interface may influence CYP24A1 regioselectivity. Taken together, these findings contribute to our understanding of Adx recognition in a critical vitamin D-inactivating enzyme and provide broader insight regarding the variability inherent in CYPAdx interactions.
Use: pLink; pLabel



DNA binding reorganizes the intrinsically disordered C-terminal region of PSC in Drosophila PRC1
Journal of Molecular Biology2020. Kang, JJ et al. Inst Rech Clin Montreal, 110 Ave Pins Ouest, Montreal, PQ H2W 1R7, Canada.
ABSTRACT:Polycomb Group proteins regulate gene expression by modifying chromatin. Polycomb Repressive Complex 1 (PRC1) has two activities: a ubiquitin ligase activity for histone H2A and a chromatin compacting activity. In Drosophila, the Posterior Sex Combs (PSC) subunit of PRC1 is central to both activities. The N-terminal of PSC assembles into PRC1, including partnering with dRING to form the ubiquitin ligase. The intrinsically disordered C-terminal region of PSC compacts chromatin and inhibits chromatin remodeling and transcription in vitro. Both regions of PSC are essential in vivo. To understand how these two activities may be coordinated in PRC1, we used crosslinking mass spectrometry to analyze the conformations of the C-terminal region of PSC in PRC1 and how they change on binding DNA. Crosslinking identifies interactions between the C-terminal region of PSC and the core of PRC1, including between N and C-terminal regions of PSC. New contacts and overall more compacted PSC C-terminal region conformations are induced by DNA binding. Protein footprinting of accessible lysine residues reveals an extended, bipartite candidate DNA/chromatin binding surface in the C-terminal region of PSC. Our data suggest a model in which DNA (or chromatin) follows a long path on the flexible disordered region of PSC. Intramolecular interactions of PSC detected by crosslinking can bring the high-affinity DNA/chromatin binding region close to the core of PRC1 without disrupting the interface between the ubiquitin ligase and the nucleosome. Our approach may be applicable to understanding the global organization of other large intrinsically disordered regions that bind nucleic acids. (C) 2020 The Author(s). Published by Elsevier Ltd.
Use: pLink



FGF23 contains two distinct high-affinity binding sites enabling bivalent interactions with -Klotho
PNAS2020. Suzuki, Y et al. Yale Univ, Dept Pharmacol, Sch Med, New Haven, CT 06510 USA.
ABSTRACT:The three members of the endocrine-fibroblast growth factor (FGF) family, FGF19, 21, and 23 are circulating hormones that regulate critical metabolic processes. FGF23 stimulates the assembly of a signaling complex composed of alpha-Klotho (KLA) and FGF receptor (FGFR) resulting in kinase activation, regulation of phosphate homeostasis, and vitamin D levels. Here we report that the C-terminal tail of FGF23, a region responsible for KLA binding, contains two tandem repeats, repeat 1 (R1) and repeat 2 (R2) that function as two distinct ligands for KLA. FGF23 variants with a single KLA binding site, FGF23-R1, FGF23-R2, or FGF23-wild type (WT) with both R1 and R2, bind to KLA with similar binding affinity and stimulate FGFR1 activation and MAPK response. R2 is flanked by two cysteines that form a disulfide bridge in FGF23-WT; disulfide bridge formation in FGF23-WT is dispensable for KLA binding and for cell signaling via FGFRs. We show that FGF23-WT stimulates dimerization and activation of a chimeric receptor molecule composed of the extracellular domain of KLA fused to the cytoplasmic domain of FGFR and employ total internal reflection fluorescence microscopy to visualize individual KLA molecules on the cell surface. These experiments demonstrate that FGF23-WT can act as a bivalent ligand of KLA in the cell membrane. Finally, an engineered Fc-R2 protein acts as an FGF23 antagonist offering new pharmacological intervention for treating diseases caused by excessive FGF23 abundance or activity.
Use: pLink



Integrated structural modeling of full-length LRH-1 reveals inter-domain interactions contribute to receptor structure and function
Structure2020. Seacrist, CD et al. Vanderbilt Univ, Dept Pharmacol, Nashville, TN 37235 USA.
ABSTRACT:Liver receptor homolog-1 (LRH-1; NR5A2) is a nuclear receptor that regulates a diverse array of biological processes. In contrast to dimeric nuclear receptors, LRH-1 is an obligate monomer and contains a subtype-specific helix at the C terminus of the DNA-binding domain (DBD), termed FTZ-F1. Although detailed structural information is available for individual domains of LRH-1, it is unknown how these domains exist in the intact nuclear receptor Here, we developed an integrated structural model of human full-length LRH-1 using a combination of HDX-MS, XL-MS, Rosetta computational docking, and SAXS, The model predicts the DBD FTZ-F1 helix directly interacts with ligand binding domain helix 2, We confirmed several other predicted inter-domain interactions via structural and functional analyses. Comparison between the LRH-1/Dax-1 co-crystal structure and the integrated model predicted and confirmed Dax-1 co-repressor to modulate LRH-1 inter-domain dynamics. Together, these data support individual LRH-1 domains interacting to influence receptor structure and function.
Use: pLink



Dynamic folding modulation generates FGF21 variant against diabetes
EMBO reports2020. Zhu, Lei et al. High Magnetic Field Laboratory, CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy ofSciences, Hefei, China
ABSTRACT:Fibroblast growth factor 21 (FGF21) is a regulator of glucose and lipid metabolism. It has been widely considered as a promising candidate for the treatment of type 2 diabetes mellitus (T2DM) and other related metabolic disorders. However, lack of structural and dynamic information has limited FGF21-based drug development. Here, using nuclear magnetic resonance (NMR) spectroscopy, we determine the structure of FGF21 and find that its non-canonical flexible beta-trefoil conformation affects the folding of beta2-beta3 hairpin and further overall protein stability. To modulate folding dynamics, we designed an FGF21-FGF19 chimera, FGF21SS . As expected, FGF21SS shows better thermostability without inducing hepatocyte proliferation. Functional characterization of FGF21SS shows its better insulin sensitivity, reduced inflammation in 3T3-L1 adipocytes, and lower blood glucose and insulin levels in ob/ob mice compared with wild type. Our dynamics-based rational design provides a promising approach for FGF21-based therapeutic development against T2DM. 2020 The Authors.
Use: pLink