pFind Studio: a computational solution for mass spectrometry-based proteomics



2020




Vaccinia virus immunomodulator A46: destructive interactions with MAL and MyD88 shown by negative-stain electron microscopy
Structure2020. Azar, DF et al. Med Univ Vienna, Vienna Bioctr, Max Perutz Labs, Dr Bohr Gasse 9-3, A-1030 Vienna, Austria.
ABSTRACT:Vaccinia virus A46 is an anti-inflammatory and non-anti-apoptotic, two-domain member of the poxviral Bcl-2-like protein family that inhibits the cellular innate immune response at the level of the Toll/interleukin-1 receptor (TIR) domain-containing TLR adaptor proteins MAL, MyD88, TRAM, and TRIF. The mechanism of interaction of A46 with its targets has remained unclear. The TIR domains of MAL and MyD88 have been shown to signal by forming filamentous assemblies. We show a clear concentration-dependent destruction of both of these assemblies by A46 by means of negative-stain electron microscopy from molar ratios of 1:15 for MAL and 1:30 for MyD88. Using targeted mutagenesis and protein-protein crosslinking, we show that A46 interacts with MAL and MyD88 through several facets, including residues on helices alpha 1 and alpha 7 and the C-terminal flexible region. We propose a model in which A46 targets the MAL and MyD88 signalosome intra-strand interfaces and gradually destroys their assemblies in a concentration-dependent manner.
Use: pLink



Identification of sulfenylated cysteines in Arabidopsis thaliana proteins using a disulfide-linked peptide reporter
Frontiers in plant science2020. Wei, B et al. Univ Ghent, Dept Plant Biotechnol & Bioinformat, Ghent, Belgium.
ABSTRACT:In proteins, hydrogen peroxide (H2O2) reacts with redox-sensitive cysteines to form cysteine sulfenic acid, also known asS-sulfenylation. These cysteine oxidation events can steer diverse cellular processes by altering protein interactions, trafficking, conformation, and function. Previously, we had identifiedS-sulfenylated proteins by using a tagged proteinaceous probe based on the yeast AP-1-like (Yap1) transcription factor that specifically reacts with sulfenic acids and traps them through a mixed disulfide bond. However, the identity of theS-sulfenylated amino acid residues within a protein remained enigmatic. By using the same transgenic YAP1C probe, we present here a technological advancement to identifyin situsulfenylated cysteine sites inArabidopsis thalianacells under control condition and oxidative stress. Briefly, the total extract of transgenic YAP1CA. thalianacells was initially purified on IgG-Sepharose beads, followed by a tryptic digest. Then, the mixed disulfide-linked peptides were further enriched at the peptide level on an anti-YAP1C-derived peptide (C598SEIWDR) antibody. Subsequent mass spectrometry analysis with pLink 2 identified 1,745 YAP1C cross-linked peptides, indicating sulfenylated cysteines in over 1,000 proteins. Approximately 55% of these YAP1C-linked cysteines had previously been reported as redox-sensitive cysteines (S-sulfenylation,S-nitrosylation, and reversibly oxidized cysteines). The presented methodology provides a noninvasive approach to identify sulfenylated cysteines in any species that can be genetically modified.
Use: pLink



Epitope and paratope mapping of PD-1/Nivolumab by mass spectrometry-based Hydrogen--deuterium exchange, cross-linking, and molecular docking
Analytical Chemistry2020. Zhang, MM et al. Bristol Myers Squibb Co, Nonclin Res & Dev, Pharmaceut Candidate Optimizat, Princeton, NJ 08540 USA.
ABSTRACT:Programmed cell death-1 (PD-1), an antigen co-receptor on cell surfaces, is one of the conspicuous immune checkpoints. Nivolumab, a monoclonal antibody therapeutic approved by the FDA, binds to PD-1 and efficiently blocks its pathways. In this study, an integrated approach was developed to map the epitope/paratope of PD-1/nivolumab. The approach includes hydrogen -deuterium exchange mass spectrometry (HDX-MS) followed by electron-transfer dissociation (ETD), chemical cross-linking, and molecular docking. HDX-ETD offers some binding-site characterization with amino acid resolution. Chemical cross-linking provides complementary information on one additional epitope (i.e., the BC-loop) and a potential paratope at the N-terminus of the heavy chain. Furthermore, cross-linking identifies another loop region (i.e., the CD-loop) that undergoes a remote conformational change. The distance restraints derived from the cross-links enable building high-confidence models of PD-1/nivolumab, evaluated with respect to a resolved crystal structure. This integrated strategy is an opportunity to characterize comprehensively other antigen-antibody interactions, to enable the understanding of binding mechanisms, and to design future antibody therapeutics.
Use: pLink



Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation
Elife2020. Lv, L et al. Natl Inst Biol Sci, Beijing, Peoples R China.
ABSTRACT:Molecular-glue degraders mediate interactions between target proteins and components of the ubiquitin-proteasome system to cause selective protein degradation. Here, we report a new molecular glue HQ461 discovered by high-throughput screening. Using loss-of-function and gain-of-function genetic screening in human cancer cells followed by biochemical reconstitution, we show that HQ461 acts by promoting an interaction between CDK12 and DDB1-CUL4-RBX1 E3 ubiquitin ligase, leading to polyubiquitination and degradation of CDK12-interacting protein Cyclin K (CCNK). Degradation of CCNK mediated by HQ461 compromised CDK12 function, leading to reduced phosphorylation of a CDK12 substrate, downregulation of DNA damage response genes, and cell death. Structure-activity relationship analysis of HQ461 revealed the importance of a 5-methylthiazol-2-amine pharmacophore and resulted in an HQ461 derivate with improved potency. Our studies reveal a new molecular glue that recruits its target protein directly to DDB1 to bypass the requirement of a substrate-specific receptor, presenting a new strategy for targeted protein degradation.
Use: pLink



Rett syndrome-causing mutations compromise MeCP2-mediated liquidliquid phase separation of chromatin
Cell Research2020. Wang, L et al. Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, Tsinghua Univ Peking Univ Joint Ctr Life Sci, Sch Life Sci,Beijing Frontier Res Ctr Biol Struct, Beijing, Peoples R China.
ABSTRACT:Rett syndrome (RTT), a severe postnatal neurodevelopmental disorder, is caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). MeCP2 is a chromatin organizer regulating gene expression. RTT-causing mutations have been shown to affect this function. However, the mechanism by which MeCP2 organizes chromatin is unclear. In this study, we found that MeCP2 can induce compaction and liquid-liquid phase separation of nucleosomal arrays in vitro, and DNA methylation further enhances formation of chromatin condensates by MeCP2. Interestingly, RTT-causing mutations compromise MeCP2-mediated chromatin phase separation, while benign variants have little effect on this process. Moreover, MeCP2 competes with linker histone H1 to form mutually exclusive chromatin condensates in vitro and distinct heterochromatin foci in vivo. RTT-causing mutations reduce or even abolish the ability of MeCP2 to compete with histone H1 and to form chromatin condensates. Together, our results identify a novel mechanism by which phase separation underlies MeCP2-mediated heterochromatin formation and reveal the potential link between this process and the pathology of RTT.
Use: pLink



Structural basis of human full-length kindlin-3 homotrimer in an auto-inhibited state
PLOS Biology2020. Bu, WT et al. Nanyang Technol Univ, Sch Biol Sci, Singapore, Singapore.
ABSTRACT:Kindlin-1, -2, and -3 directly bind integrin beta cytoplasmic tails to regulate integrin activation and signaling. Despite their functional significance and links to several diseases, structural information on full-length kindlin proteins remains unknown. Here, we report the crystal structure of human full-length kindlin-3, which reveals a novel homotrimer state. Unlike kindlin-3 monomer, which is the major population in insect and mammalian cell expression systems, kindlin-3 trimer does not bind integrin beta cytoplasmic tail as the integrin-binding pocket in the F3 subdomain of 1 protomer is occluded by the pleckstrin homology (PH) domain of another protomer, suggesting that kindlin-3 is auto-inhibited upon trimer formation. This is also supported by functional assays in which kindlin-3 knockout K562 erythroleukemia cells reconstituted with the mutant kindlin-3 containing trimer-disrupting mutations exhibited an increase in integrin-mediated adhesion and spreading on fibronectin compared with those reconstituted with wild-type kindlin-3. Taken together, our findings reveal a novel mechanism of kindlin auto-inhibition that involves its homotrimer formation.
Use: pLink



Expanding the depth and sensitivity of cross-link identification by differential ion mobility using high-field asymmetric waveform ion mobility spectrometry
Analytical Chemistry2020. Schnirch, L et al. Leibniz Forschungsinst Mol Pharmakol FMP, Dept Chem Biol, D-13125 Berlin, Germany.
ABSTRACT:In cross-linking mass spectrometry (XL-MS), the depth and sensitivity of cross-link detection is often limited by the low abundance of cross-links compared to non-cross-linked peptides in the digestion mixture. To improve the identification efficiency of cross-links, here, we present a gas-phase separation strategy using high-field asymmetric waveform ion mobility spectrometry (FAIMS) coupled to the Orbitrap Tribrid mass spectrometers. By enabling an additional peptide separation step in the gas phase using the FAIMS device, we increase the number of cross-link identifications by 22% for a medium complex sample and 59% for strong cation exchange-fractionated HEK293T cell lysate in XL-MS experiments using disuccinimidyl sulfoxide (DSSO) cross-linker. When disuccinimidyl suberate (DSS) cross-linker is in use, we are able to boost cross-link identification by 89% for the medium and 100% for the high complex sample compared to the analyses without FAIMS. Furthermore, we show that, for medium complex samples, FAIMS enables the collection of single-shot XL-MS data with a comparable depth to the corresponding sample fractionated by chromatography-based approaches. Altogether, we demonstrate FAIMS is highly beneficial for XL-MS studies by expanding the proteome coverage of cross-links while improving the efficiency and confidence of cross-link identification.
Use: pLink



Structure of the human sodium leak channel NALCN in complex with FAM155A
Nature communications2020. Xie, JF et al. Westlake Univ, Sch Life Sci, Key Lab Struct Biol Zhejiang Prov, Hangzhou 310024, Zhejiang, Peoples R China.
ABSTRACT:NALCN, a sodium leak channel expressed mainly in the central nervous system, is responsible for the resting Na+ permeability that controls neuronal excitability. Dysfunctions of the NALCN channelosome, NALCN with several auxiliary subunits, are associated with a variety of human diseases. Here, we report the cryo-EM structure of human NALCN in complex with FAM155A at an overall resolution of 3.1 angstroms. FAM155A forms extensive interactions with the extracellular loops of NALCN that may help stabilize NALCN in the membrane. A Na+ ion-binding site, reminiscent of a Ca2+ binding site in Ca-v channels, is identified in the unique EEKE selectivity filter. Despite its 'leaky' nature, the channel is closed and the intracellular gate is sealed by S6(I), II-III linker and III-IV linker. Our study establishes the molecular basis of Na+ permeation and voltage sensitivity, and provides important clues to the mechanistic understanding of NALCN regulation and NALCN channelosome-related diseases. NALCN, a sodium leak channel, plays a key role in regulating the resting membrane potential and controlling neuronal excitability. Here the authors report a cryo-EM structure of human NALCN in complex with FAM155A, that with complementary functional analyses provide insights on its ion selectivity, voltage sensing and specific interactions with auxiliary subunits.
Use: pLink



Identification of Sulfenylated Cysteines in Arabidopsis thaliana Proteins Using a Disulfide-Linked Peptide Reporter
Frontiers in plant science2020. Wei, B et al. Univ Ghent, Dept Plant Biotechnol & Bioinformat, Ghent, Belgium.
ABSTRACT:In proteins, hydrogen peroxide (H2O2) reacts with redox-sensitive cysteines to form cysteine sulfenic acid, also known asS-sulfenylation. These cysteine oxidation events can steer diverse cellular processes by altering protein interactions, trafficking, conformation, and function. Previously, we had identifiedS-sulfenylated proteins by using a tagged proteinaceous probe based on the yeast AP-1-like (Yap1) transcription factor that specifically reacts with sulfenic acids and traps them through a mixed disulfide bond. However, the identity of theS-sulfenylated amino acid residues within a protein remained enigmatic. By using the same transgenic YAP1C probe, we present here a technological advancement to identifyin situsulfenylated cysteine sites inArabidopsis thalianacells under control condition and oxidative stress. Briefly, the total extract of transgenic YAP1CA. thalianacells was initially purified on IgG-Sepharose beads, followed by a tryptic digest. Then, the mixed disulfide-linked peptides were further enriched at the peptide level on an anti-YAP1C-derived peptide (C598SEIWDR) antibody. Subsequent mass spectrometry analysis with pLink 2 identified 1,745 YAP1C cross-linked peptides, indicating sulfenylated cysteines in over 1,000 proteins. Approximately 55% of these YAP1C-linked cysteines had previously been reported as redox-sensitive cysteines (S-sulfenylation,S-nitrosylation, and reversibly oxidized cysteines). The presented methodology provides a noninvasive approach to identify sulfenylated cysteines in any species that can be genetically modified.
Use: pLink



Generation of aggregates of -lactalbumin by UV-B light exposure
Journal of Agricultural and Food Chemistry2020. Zhao, ZC et al. Univ Copenhagen, Fac Sci, Dept Food Sci, DK-1958 Frederiksberg C, Denmark.
ABSTRACT:Whey proteins are widely used as ingredients in the form of aggregates to obtain certain functionalities in food applications. The aim of this study was to understand how UV illumination generates aggregates of alpha-lactalbumin (alpha-LA) as an alternative to heat treatments traditionally used for industrial production of protein aggregates. Absorption of UV light by alpha-LA caused cleavage of disulfide bonds and release of thiol groups, which resulted in primarily disulfide-mediated aggregation. This process mediated efficient aggregation with up to 98% monomer conversion into aggregates through formation of intermolecular disulfide bonds, while only minor levels of nonreducible cross-links were observed. SDS-PAGE analysis revealed that illumination led to formation of dimeric, trimeric, and oligomeric forms of alpha-LA. LC-MS/MS analysis showed that all of the four native disulfide bonds in alpha-LA were cleaved by UV illumination but to different extents, and the extent of cleavage was found to be higher in the absence of calcium. Seventeen different non-native disulfides were formed after 24 h of UV illumination. Two dityrosine bonds were identified (Tyr103-Tyr103 and Tyr36-Tyr103) alongside ditryptophan (Trp118-Trp118) and tyrosine-tryptophan (Tyr50-Trp60) cross-links. In addition, Trp60, Trp118, Cys73, Cys91, Cys120, Phe80, Met90, His68, and His107 were found to be oxidized up to 12% as compared to a nonilluminated control. Our work illustrates that light exposure can be used for generation of alpha-LA aggregates, but optimization of the illumination conditions is required to reduce oxidative damage to Trp, Cys, Phe, Met, and His residues.
Use: pLink