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ABSTRACT: In relative protein abundance determination
from peptide intensities recorded in full mass scans, a major
complication that affects quantitation accuracy is signal
interference from coeluting ions of similar m/z values. Here,
we present pQuant, a quantitation software tool that solves
this problem. pQuant detects interference signals, identifies for
each peptide a pair of least interfered isotopic chromatograms:
one for the light and one for the heavy isotope-labeled peptide.
On the basis of these isotopic pairs, pQuant calculates the
relative heavy/light peptide ratios along with their 99.75%
confidence intervals (CIs). From the peptides ratios and their CIs, pQuant estimates the protein ratios and associated CIs by
kernel density estimation. We tested pQuant, Census and MaxQuant on data sets obtained from mixtures (at varying mixing
ratios from 10:1 to 1:10) of light- and heavy-SILAC labeled HeLa cells or 14N- and 15N-labeled Escherichia coli cells. pQuant
quantitated more peptides with better accuracy than Census and MaxQuant in all 14 data sets. On the SILAC data sets, the
nonquantified “NaN” (not a number) ratios generated by Census, MaxQuant, and pQuant accounted for 2.5−10.7%, 1.8−2.7%,
and 0.01−0.5% of all ratios, respectively. On the 14N/15N data sets, which cannot be quantified by MaxQuant, Census and
pQuant produced 0.9−10.0% and 0.3−2.9% NaN ratios, respectively. Excluding these NaN results, the standard deviations of the
numerical ratios calculated by Census or MaxQuant are 30−100% larger than those by pQuant. These results show that pQuant
outperforms Census and MaxQuant in SILAC and 15N-based quantitation.

Much progress has been made in mass spectrometry (MS)-
based quantitative proteomics in recent years, as

evidenced by numerous applications, such as biomarker
discovery,1 study of chromatin assembly and disassembly,2

identification of insulin signaling targets,3 and protein post-
translational modification (PTM).4

Among the most commonly used quantitative strategies are
full MS scan-based quantitation methods, such as SILAC (stable
isotope labeling with amino acids in cell),5 15N-labeling,6 and
18O-labeling.7 In these strategies, proteins are metabolically
labeled with stable isotopes, digested into peptides, and then
analyzed using liquid chromatography (LC)-MS/MS. Quantita-
tion software tools are designed to extract the intensities of pairs
of light (L, unlabeled) and heavy (H, labeled) peptides from full
MS scans. The relative abundance ratio of a protein between two
conditions is then calculated based on the ratios of its constituent
peptides.8

For high-complexity samples such as whole cell lysates, it is not
uncommon that a peptide coelutes with another peptide or a
nonpeptide contaminant of a similar m/z value.9 The
interference caused by coeluting ions of similar m/z values can
seriously compromise the accuracy of quantitation.10,11 We

examined two leading quantitation software tools Census12 and
MaxQuant,13 and found that a lot of the peptide quantitation
results are “NaN” (not a number) or outliers (far from the
sample mixing ratio) (Tables 1−3), and many of them are due to
interference signals. For example, in our SILAC data of 1:1 (H/
L) mixed HeLa cells, Census outputs 167 NaN and 420 outlier
ratios that are larger than 2 or smaller than 0.5. Among the 587
ratios, only 19 (3%) correspond to low-abundance peptides; the
other 568 (97%) have obvious signals of both the light peptide
and the heavy peptide in the chromatograms, and most of them
are quantified erroneously because of interference from coeluting
isobaric ions.
For those that are not NaN ratios, it is desirable to know which

ones are accurate and which ones not. However, in spite of the
pressing need, few of the existing quantitation tools provide
accuracy evaluation for calculated abundance ratios of peptides
and proteins. Census attempts to assess the accuracy of a peptide
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ratio by its determinant score (R2),12 and in some studies, R2 is
even used to recalibrate ratios.14,15 However, R2 is essentially a
value that describes how well the chromatogram of a light
peptide correlates with that of the corresponding heavy peptide;
it is not a measure of accuracy per se. A ratio far from the correct
value sometimes has a high R2 value (Figure 1).
Here, we describe a new quantitation software tool called

pQuant, in which we strive to minimize the interference of
coeluting ions of similarm/z values. [pQuant can be downloaded
from http://pfind.ict.ac.cn/software/pQuant/index.html.]
pQuant reconstructs a chromatogram for each isotopic peak,
generating one set of isotopic chromatograms for the light
peptide and another set for the heavy peptide. pQuant then
calculates the peptide ratio and the associated confidence interval
(CI) based on the least interfered isotopic chromatogram of the
light peptide and the least interfered chromatogram of the heavy
peptide. Finally, a protein ratio is calculated from peptide ratios
by kernel density estimation. The accuracy of a protein ratio is
estimated based on the number of quantified peptides of the
protein and the confidence intervals of these peptide ratios. We
show that pQuant greatly improves full MS scan-based,
proteome-wide quantitation. pQuant results greatly reduces
the number of NaN ratios and outlier ratios (Tables 1−3). In our
1:1 SILAC data, pQuant outputs only 4 NaN ratios and 80
outliers (ratios >2 or <0.5), that is, of the 587 inaccurate Census
ratios described above, pQuant successfully corrected 503
(86%).

■ EXPERIMENTAL SECTION
Sample Preparation. HeLa cells were grown in DMEM

deficient medium (Invitrogen) containing 10% dialyzed FBS
(Invitrogen), supplemented with [13C6, 15N2] labeled L-lysine
and [13C6, 15N4] labeled L-arginine (Cambridge Isotope
Laboratories, Inc.) or normal lysine and arginine. The heavy-
and light- isotopic labeled whole-cell lysates were mixed at seven
different ratios 10:1, 5:1, 2:1, 1:1, 1:2, 1:5, and 1:10, by total
protein amounts. The Escherichia coli strain MG1655 was
cultured at 37 °C overnight in M9 medium containing either
15N-labeled (≥99% atomic enrichment of 15N) or unlabeled

ammonium. The 14N- (i.e., unlabeled) and 15N-labeled cultures
were mixed at seven different ratios 10:1, 3:1, 1.5:1, 1:1, 1:1.5,
1:3, and 1:10 by total cell numbers (OD600 mL).

Mass Spectrometry. All experiments were performed on an
LTQOrbitrap XL mass spectrometer (Thermo Fisher Scientific,
San Jose, CA). A MudPIT16 column was placed in-line with an
Agilent 1200 quaternary HPLC (Agilent, Palo Alto, CA). Eluted
peptides were sprayed into the mass spectrometer and analyzed
using a modified 5-step MudPIT method. After the first reverse
phase gradient (MudPIT step 1), the remaining four steps each
started with a salt pulse containing 20, 50, 100, or another 100%
of buffer C before the reverse phase gradient. Full MS scans were
acquired in the Orbitrap (400−2000 m/z, R = 60000), and each
full MS scan was followed by data-dependent MS/MS scans in
the linear ion trap on the eight most intense ions at 35%
normalized collision energy. Ions already selected once for MS/
MS were dynamically excluded for 30 s.

Database Searching. For the SILAC data, MS/MS spectra
were searched against the concatenated forward and reversed IPI
human database (version 3.68) using ProLuCID,17 Andromeda
(a search engine embedded in MaxQuant, version 1.4)18 and
pFind,19−21 respectively. Carbamidomethylation of cysteines
were included as a fixed modification. The estimated false
discovery rate (FDR) was nomore than 1% for identified spectra.
The filtered SILAC identification results were quantified using
Census (version 1.57), MaxQuant, and pQuant at their
respective default settings for SILAC. The 14N/15N data were
analyzed similarly, except that an E. coli database (Escherichia_-
coli_K_12_substr_MG1655 from NCBI) and appropriate
settings for 14N/15N labeling were used. Supporting Information
Table 1 lists the key parameters of the software tools that we
used.

Overview of pQuant. As shown in Supporting Information
Figure 1, the workflow of pQuant consists of three steps:
extraction of peptide signals, quantitation of peptide ratios, and
quantitation of protein ratios.

Step 1: Extraction of Peptide Signals. This module carries
out three computational tasks: (1) data preparation, (2)

Table 1. Comparison of the pQuant and Census Quantitation Results on the SILAC Dataa

peptide levelb protein group levelc

NaN ratios numerical ratios numerical ratios

sample-mixing ratio
(H/L)

expected
log2(ratio)

quant.
software no. all ratios no. % median S.D. no. all ratios no. NaN ratios median S.D.

1:1 0.00 pQuant 6750 4 0.06 0.01 0.32 1219 0 0.01 0.32
Census 167 2.47 0.08 0.66 23 0.11 0.62

1:2 −1.00 pQuant 8852 8 0.09 −0.86 0.34 1705 2 −0.83 0.30
Census 248 2.80 −0.81 0.84 37 −0.71 0.79

2:1 1.00 pQuant 9198 14 0.15 1.06 0.38 1820 0 1.07 0.41
Census 312 3.39 1.18 0.67 37 1.21 0.62

1:5 −2.32 pQuant 8804 20 0.23 −2.18 0.50 1993 4 −2.12 0.49
Census 554 6.29 −2.06 1.30 81 −1.74 1.14

5:1 2.32 pQuant 5722 23 0.40 2.50 0.75 1667 2 2.51 0.75
Census 441 7.71 2.64 0.99 82 2.74 0.89

1:10 −3.32 pQuant 6879 29 0.42 −3.18 0.76 1833 6 −3.06 0.71
Census 735 10.70 −2.84 1.75 116 −2.25 1.48

10:1 3.32 pQuant 4654 25 0.53 3.14 0.78 1524 4 3.11 0.81
Census 475 10.20 3.47 1.06 93 3.47 0.97

aCalculated ratios are log2-transformed.
bIn quantification of each peptide, only the PSM with the highest identification score was used as the starting

point to reconstruct chromatograms. cTo guarantee a fair comparison, we calculate the protein ratios at the group level by taking the median of the
peptide ratios.
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Figure 1.Quantitation results for peptide GHTQQDPEVPK from the H/L = 1:1 mixed SILAC data set. (a) The light (blue) and heavy (red) peptide
chromatograms constructed by Census. The determinant score R2 is 0.91, suggesting good correlation between the chromatograms and that the
regression H/L ratio of 2.63 should be trustworthy. However, the expected ratio is 1:1. (b) A full-scan spectrum (scan 3218) showing the precursor
peptides. There is obvious interference in the 2nd isotopic peak of the heavy peptide (indicated by an arrow), and the interference signal is probably
included in the chromatogram reconstruction by Census. (c) The isotopic chromatograms of the monoisotopic, 1st, and 2nd isotopic peaks of the light
(blue) or heavy (red) peptide are shown along the m/z, elution time (represented by scan numbers) and intensity dimensions. pQuant automatically
determines the start and end points of all the isotopic chromatograms. The start point is Scan 3147 and the end point is Scan 3358. Quantitation is based
on two isotopic chromatograms (one for the light peptide and one for the heavy peptide) that are least affected. Here pQuant uses the monoisotopic
chromatograms of the light and the heavy peptide, and the calculated ratio is 1.09 with a normalized CI of [90%, 110%], very close to 1:1.
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identifying experimental isotopic peaks in full MS scans, and (3)
constructing isotopic chromatograms.
(1) Data Preparation. First, MS files are indexed. Then high-

confidence peptide-spectrum matches (PSMs) produced by
identification software tools are read into the program.
(2) Identifying Experimental Isotopic Peaks. For each input

peptide sequence, pQuant calculates the theoretical distribution
of isotopic peaks using a stepwise convolution algorithm22 and
identifies experimental isotopic peaks in a range of MS scans
where the peptide may be expected. Because the trigger MS scan
(the MS scan immediately before the MS/MS spectrum that
identifies a peptide) is often off the center of the chromatogram
and most of our peptides have a chromatographic peak width of
less than 1 min, a 2 min window (defined by users) centered at
the trigger MS scan is applied to include all the MS scans
containing the peptide.
For each MS scan in this window, pQuant applies a ppm-level

m/z tolerance window (±10 ppm for our data sets) around the
theoretical m/z values of the isotopic peaks of the peptide to
select the experimental peaks. After the removal of low-intensity
peaks below a user-defined threshold (1E4 in this study), if more
than one peak is found in any of the theoretical mass windows,
pQuant will decide which one is better by allowing only one peak
per window and comparing all possible combinations of the
candidate isotopic peaks to the theoretical pattern. The one with
an intensity distribution pattern most similar to the theoretical
pattern is kept and its constituent peaks are regarded as
experimental isotopic peaks of the peptide in the current MS
scan. In this way, pQuant distinguishes true peptide signals from
noise and other peptides.
To guard against possible incomplete labeling of stable

isotopes, pQuant estimates for each peptide the atomic
enrichment ratio as described before.23 pQuant simulates the
theoretical isotopic distributions at varying atomic enrichment
ratios (100%, 99%, 98%, etc.), calculates the similarity between
the experimental isotopic distribution and a theoretical isotopic
distribution, and determines the enrichment value that generates
the best match.
(3) Constructing Isotopic Chromatograms. Some quantita-

tion tools including Census construct a pair of chromatograms
for each peptide: the intensities of all isotopic peaks of the light
peptide are summed to generate one chromatogram and another
one for the corresponding heavy peptide. These are referred to as
“peptide chromatograms” in this paper. In contrast, MaxQuant
constructs chromatograms for individual isotopic peaks of the
light and the heavy peptides. These “isotopic chromatograms”
are used in pQuant.
Next, pQuant determines the start and end points of isotopic

chromatograms. For each isotopic peak, its experimental
intensities along the retention time axis in contiguous MS
scans are assembled into a profile. This profile extends both left
and right from the triggerMS scan until the intensity drops below
10% of the apex of the extending profile. Because an MS2 scan is
usually triggered before the intensity of the precursor ion reaches
the apex, the left and right extensions are typically asymmetric,
and there is often an upward tail in the extending profile. Thus, it
is necessary to split the profile at the local minima nearest to the
growing ends, and what remains in the middle is a temporary
isotopic chromatogram for the next step. This algorithm is
resistant to burrs and tailing of chromatographic peaks, and the
computing complexity is low. However, this process alone is not
sufficient to determine the start and end points of an isotopic
chromatogram.We have observed that the chromatograms of the

fourth and fifth isotopic peaks are generally not as wide as the
chromatogram of the monoisotopic peak unless they are
interfered by other ions, in which case the extended parts of
the fourth or fifth isotopic chromatogram are discarded. To
accommodate slight retention time shifts between a pair of light
and heavy peptides, pQuant shifts these chromatograms across
each other until the correlation coefficient reaches a maximum.

Step 2: Quantitation of Peptide Ratios.We use the vector tl =
(t1
l , ..., tN

l ) to represent the theoretical isotopic abundances of the
light peptide, and the vector th = (t1

h, ..., tM
h ) to represent the

theoretical isotopic abundances of the heavy peptide, in which N
is the number of the isotopic peaks of the light peptide, andM is
the number of the isotopic peaks of the heavy peptide. Isotopic
peaks with relative abundances less than 5% of the base peak are
exlcuded, so usually, 3 ≤ N ≤ 5 and 3 ≤M ≤ 5. The intensity of
the ith isotopic peak in the jth scan of the light peptide is
indicated by pi,j

l . For the monoisotopic peak, i = 1; for the first
isotopic peak, i = 2; the experimental isotopic intensities of the
light peptide in the j-th scan is (p1,j

l , ..., pN,j
l ). The monoisotopic

chromatogram of the light peptide is represented by the vector p1
l

= (p1,1
l , ..., p1,K

l ). K is the number of scans in the chromatogram.
The same symbols are also used for the heavy peptide except that
the superscript is “h”. These terms are visualized in Supporting
Information Figure 2.
Next, all the isotopic chromatograms are normalized. The

normalized chromatograms of the light peptide are L1 = p1
l (∑ti

l/
t1
l ), L2 = p2

l (∑ti
l/t2

l ), ..., LN = pN
l (∑ti

l/tN
l ). The normalized

chromatograms of the heavy peptide are H1 = p1
h(∑ti

h/t1
h), H2 =

p2
h(∑ti

h/t2
h), ..., HM = pM

h (∑ti
h/tM

h ). Once normalized, any two
chromatograms, one from the light peptide and the other from
the heavy peptide, can be used to calculate the H/L ratio of the
peptide.
Given two chromatograms, for example, one is the

monoisotopic chromatogram of the light peptide, and the
other is the monoisotopic chromatogram of the heavy peptide,
let X = L1=(X1, ..., Xj, ..., XK) and Y = H1=(Y1, ..., Yj, ..., YK).
pQuant calculates the ratio using the regression model Y = aX + e
where a is the H/L ratio and e indicates a Gaussian noise. The
optimal value of a is solved using the least-squares method as a ̂ =
∑XjYj/∑XjXj. The confidence interval for a is calculated as
follows. On the basis of the properties of the least-squares
estimator, the estimated standard error of a ̂ is σ̂ = (K−1·∑(Yj −
a ̂Xj)

2/∑Xj
2)1/2. Because (a ̂ − a)/σ̂ → N(0,1), the so-called

“asymptotic normality” of the least-squares estimator, the (1 −
α) confidence interval for a ̂ is approximately [a ̂ − zα/2σ̂, a ̂ +
zα/2σ̂]. In pQuant, we set α = 0.0025, so, zα/2 = 3, and the 99.75%
confidence interval for an H/L ratio a ̂ is [a ̂ − 3σ̂, a ̂ + 3σ̂].
To guarantee that the CIs of different ratios are comparable,

we transform the original CIs [a ̂ − 3σ̂, a ̂ + 3σ̂] to normalized CIs
[(a ̂ − 3σ̂)/a ̂, (a ̂ + 3σ̂)/a ̂] and express the latter in percentages,
for example, [80%, 120%]. CI refers to “normalized 99.75%
confidence interval” hereinafter unless indicated otherwise.
As such, pQuant calculates N × M ratios and their

corresponding CIs. To determine which ratio is the most
accurate, we follow a basic idea that CI negatively correlates with
the amount of interference experienced by a peak (Figure 2). For
example, as illustrated in Figure 1, from the monoisotopic
chromatogram of the light peptide and that of the heavy peptide,
the calculated CI is [90%, 110%], and using the second isotopic
chromatogram of the heavy peptide the calculated CI is [70%,
130%]. The latter CI value is larger because the second isotopic
chromatogram of the heavy peptide has interfering signals. For
each peptide, pQuant outputs the ratio with the narrowest CI as
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the peptide ratio. The associated CI value is also included in the
output as an accuracy indicator.
pQuant and MaxQuant use the same regression model Y = aX

+ e. Census uses another regression model Y = aX + b + e, for
which the optimal values of a and b can be estimated using the
least-squares method:
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Mathematically, the model used by Census is regression with
constant term, and the model used by pQuant is regression
through the origin (RTO). Textbooks rarely discuss RTO other
than to caution against dropping the constant term from a
regression, but RTO is appropriate or even necessary in some
circumstances.24,25 Theoretically, RTO is a special case of
regression with constant term.26−30 In reality, before and after a
peptide is eluted, the signal of the peptide should be null,
therefore RTO is more appropriate than the regression with
constant term. Besides, the latter is vulnerable to interfering
signals, sometimes resulting in a < 0 (see examples in Results and
the mathematical explanation by Hocking et al.31).
Step 3: Quantitation of Protein Ratios. For shotgun

proteomics, protein ratios are calculated from peptide ratios.
Using a large data set, we tested many of the methods that had

been used,8 including simple average with or without outliers,
linear regression with or without outliers, taking the median of
peptide ratios, and computing a weighted average by considering
peptide intensity. We find that if a protein has many quantified
peptides, the calculated protein ratios using different methods are
all similar and fairly reliable (Figure 3a). However, if a protein has
only two quantified peptides and one of peptide ratio is
inaccurate, they all fail (Figure 3b).
In pQuant, we use kernel density estimation,32 a widely used

nonparametric method, to derive protein ratios and estimate the
accuracy of protein ratios from the peptide ratios and their CIs. It
is relatively simple and intuitive; but for its effective use,
parameters such as the kernel function and bandwidth need to be
carefully selected. We find that the commonly used Gaussian
kernel function is appropriate in this application:

π σ
= · μ σ− −f x

T
e( )

1 1
2

x
pep

pep

( ) /2pep
2

pep
2

(1)

where μpep is the peptide ratio a ̂, σpep is the estimated standard
deviation of a ̂, and T is the number of peptide hits of a protein.
The protein ratio distribution can be calculated by F(x) =
∑f pep(x) in which F(x) is an irregular curve but can be fitted to a
Gaussian distribution:

π σ
= μ σ− −f x e( )

1
2

x
pro

pro

( ) /2pro
2

pro
2

(2)

where μpro is the estimated protein ratio, and σpro is the estimated
standard deviation of μpro. The normalized 99.75% confidence
interval of μpro is [(μpro − 3σpro)/μpro, (μpro + 3·σpro)/μpro].

■ RESULTS AND DISCUSSION

Performance evaluation of pQuant. We compared
pQuant with Census and MaxQuant. To guarantee a fair
comparison, we adopted the following procedure based on
previously suggested rules:33 (1) Light and heavy samples are of
the same biological state to minimize the difference between
samples. Thus, most of the measured ratios should be close to the
sample mixing ratios. Our SILAC data and 14N/15N data were
prepared by following this rule. (2) All ratios must be log
transformed (see Supporting Information) and without post-
quantitation normalization. The overlap of the quantitation
results by two quantitation tools is used for comparison to avoid
the differences introduced by identification. Peptides belonging
to contaminant proteins (according to http://www.maxquant.
org/contaminants.zip) are removed. (3) NaN ratios are
analyzed. These refer to the NaN or null results by MaxQuant
and the N/A results by Census. pQuant output “Infinite” or “−
Infinite”when the light or the heavy peptide has extremely low or
no signal in MS scans34,35 (Supporting Information Figure 3).
These ratios must be analyzed separately, because they are not
positive rational numbers and cannot be used to calculate
standard deviation or mean ratios. (4) After the removal of NaN
ratios, we compare the deviation of the median ratio from the
sample-mixing ratio and also the standard deviations of ratios
between software tools. Both the median ratio and the standard
deviation of ratios reflect accuracy. For the same data set, if two
quantitation tools obtain the same expected median ratio, the
one with a smaller standard deviation outperforms the other.

Comparison of pQuant and Census. The performance of
pQuant was compared to Census using the SILAC data (Table 1)
and the 14N/15N data (Table 2). The NaN ratios are only 0.06−

Figure 2. Scatter plot of peptide ratios and CIs from the 1:1 SILAC data.
For each peptide, its log2-transformed ratio is shown on the X-axis, and
the Y-axis value represents the corresponding confidence interval using
the σ̂ value. The 99.75% confidence interval for anH/L ratio a ̂ is [a ̂− 3σ̂,
a ̂ + 3σ̂]. Ratios with small CIs cluster tightly around 1:1, and those with
larger CIs do not, indicating that ratios with small CIs are mostly
accurate.
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2.93% of all ratios in the pQuant results, much less compared to
those in the Census results (0.85−10.7%).
Census uses the regression model Y = aX + b + e to calculate

ratios and output NaN if a≤ 0. pQuant uses the regressionmodel
Y = aX + e to calculate ratios and output NaN if a ≤ 0. When
either the light or the heavy peptide has extremely low or no
signal inMS scans, that is, theX orY values are primarily zeros, an

output of NaN is reasonable (Supporting Information Figure 3).
However, for about 90% of the Census NaN ratios, there are
obvious signals for both the light peptide and the heavy peptide
in the MS scans. In these cases, interference signals are to blame
(Supporting Information Figure 4). We also examined all the
NaN ratios reported by pQuant and found that they all
corresponded to low abundance peptides, that is, either the
light or the heavy peptide or both have extremely low or zero
signal in MS scans.
After the removal of the NaN ratios from the quantitation

results, the medians of the ratios given by pQuant and Census are
almost the same. However, the standard deviations of the Census
ratios are on average twice as big as their pQuant counterparts.
This is attributed to the outlier ratios in the Census results (an
example in Figure 1). For the 1:1 SILAC data, there are a total of
175 Census ratios larger than 4 or smaller than 0.25. In
comparison, only eight such outlier ratios are produced by
pQuant.
The distributions of the peptide ratios computed by pQuant

and Census from 14 data sets are displayed in Supporting
Information Figures 5 and 6. The Census results for the 1:10
(H:L) data sets have the most NaN ratios and the largest
standard deviations (Tables 1 and 2). Our investigation found
that again the Census regression model (Y = aX + b + e) is to
blame. It happens that Y represents the light peptide and X
represents the heavy peptide. Generally, b is negligible, but as
illustrated in Supporting Information Figure 7, b can be a big
value, which causes a to bemuch smaller than it should be. This is
the most damaging when a is expected to be as large as 10.
Cornbleet et al. addressed this problem mathematically36 and a
simple solution is exchanging the values of Y and X in the
regression model and calculating the inverse ratio.
Census results are affected by interference signals because the

intensities of all isotopic peaks of a light peptide are summed, and
so are those of the heavy peptide. This strategy has the benefit of
being able to tolerate incomplete heavy isotope labeling, because
incomplete labeling hardly affects the summed intensity of the
entire isotopic envelope, although it greatly alters the intensity of
individual isotopic peaks.15,37 Without interference from
coeluting ions of similar m/z values, summing the intensities of
all isotopic peaks is perfectly fine, but if there is interference, the
interference signal would be summed into the peptide signal and
distort the quantitation result. In pQuant, the enrichment value
of the heavy isotope label is calculated for each peptide. This
value and the experimental intensity of the least interfered
isotopic peak are used to simulate the intensities of other isotopic
peaks. Thus, interference is minimized and accuracy is improved.

Comparison of pQuant and MaxQuant. Given that
MaxQuant is incompatible with 14N/15N data, we only compared
pQuant to MaxQuant on the SILAC data (Table 3).
NaN accounted for 1.83−2.74% of the peptide quantitation

results by MaxQuant and only 0.01−0.48% of those by pQuant.
It is difficult to trace why MaxQuant outputs a NaN ratio, but
these NaN ratios are marked ISO or MSMS, meaning that either
the light or the heavy peptide has extremely low or no signal in
the MS scans. Nonetheless, for about 80% of MaxQuant NaN
ratios there are obvious signals of both the light peptide and the
heavy peptide in the MS scans. So, these NaN ratios are likely
caused by interference. Supporting Information Figure 8
illustrates one such example.
We examined all the NaN ratios in the pQuant results and

found that they all corresponded to low abundance peptides.
Furthermore, we did not find a single pQuant NaN ratio that has

Figure 3. Quantitation and evaluation of protein ratios. (a) Protein
IPI00909239.1 has 20 quantified peptides and their quantitation ratios
are all relatively accurate, concentrating at 1:1. In this case, the calculated
protein ratios are quite close using three different methods (0.99 by the
kernel density estimation, 0.98 by taking the median, and 0.99 by
averaging). (b) Protein IPI:IPI00909763.1 has only 2 quantified
peptides with different ratios, 0.93 and 1.14. The normalized CIs of
these two ratios are [77%, 123%] and [62%, 138%], respectively.
Without peptide accuracy evaluation, it is difficult to determine which
peptide ratio is more reliable in estimating the protein ratio. Using
kernel density estimation, the calculated protein ratio is 0.96, close to the
peptide ratio with a smaller CI, and the normalized CI of the protein
ratio is [74%, 126%]. In both panels, the solid blue, dashed blue, and
solid orange traces correspond to f pep(x), F, and f pro(x) described in the
Experimental Section.
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a Census orMaxQuant ratio close to the sample-mixing ratio. In a
deliberate test we let pQuant quantify falsely matched peptides
(peptides from the reversed protein sequences) on the 1:1
14N/15N data set, and 97.7% of them are quantified as NaN by
pQuant. In comparison, for peptides identified with high
confidence, only 0.01−2.93% of them have NaN ratios by
pQuant (Tables 1−3).
After the removal of the NaN ratios, the values of most ratios

calculated by pQuant and MaxQuant are almost the same except
for a few seriously interfered peptides. Supporting Information
Figure 9 illustrates an outlier ratio calculated by MaxQuant.
Because of these outlier ratios, the standard deviations of the
MaxQuant ratios are on average 30% larger than those of the
pQuant ratios. The medians of the peptide or protein ratios
calculated by the two software tools are all close to the sample-

mixing ratios. For example, among the pQuant ratios from the
1:1 SILAC data, 98.9% are in the interval [0.5, 2], and the middle
50% (between the upper and lower quartiles) are in the interval
[0.91, 1.10]. This result shows that most of the H/L ratios are
close to the expected ratio of 1:1. As the sample-mixing ratio
moves away from 1:1, the fraction of ratios that are well off the
expected value increases, no matter which software tool is used
(Supporting Information Figures 6 and 10). This phenomenon
was reported previously.38 Supporting Information Figure 10
illustrates the distributions of the ratios from all samples.
As shown above, MaxQuant is meticulously refined. pQuant

and MaxQuant have two techniques in common. First, the
isotopic chromatograms in pQuant are similar to the “3D peaks”
in MaxQuant. Second, both MaxQuant and pQuant use the
regression model Y = aX + e to calculate peptide ratios. These

Table 2. Comparison of the pQuant and Census Quantitation Results on the 15N-Labeling Dataa

peptide levelb protein group levelc

NaN ratios numerical ratios numerical ratios

sample-mixing ratio
(H/L)

expected
log2(ratio)

quant.
software no. all ratios no. % median S.D. no. all ratios no. NaN ratios median S.D.

1:1 0.000 pQuant 3274 12 0.37 −0.12 0.46 401 0 −0.12 0.50
Census 28 0.85 −0.03 0.72 0 −0.01 0.62

2:3 −0.585 pQuant 3183 13 0.41 −0.69 0.47 426 0 −0.69 0.52
Census 38 1.19 −0.58 0.86 0 −0.51 0.65

3:2 0.585 pQuant 3318 10 0.30 0.38 0.54 386 0 0.40 0.54
Census 59 1.78 0.52 0.75 0 0.56 0.58

1:3 −1.585 pQuant 2711 16 0.59 −1.69 0.77 374 0 −1.69 0.56
Census 71 2.62 −1.56 1.14 1 −1.43 0.76

3:1 1.585 pQuant 2490 19 0.76 1.48 0.52 382 0 1.48 0.58
Census 61 2.45 1.63 0.73 1 1.62 0.60

1:10 −3.32 pQuant 2452 61 2.49 −3.47 0.78 473 0 −3.64 0.69
Census 246 10.0 −3.18 1.77 4 −2.64 1.14

10:1 3.32 pQuant 2666 78 2.93 3.16 0.69 447 5 3.16 0.63
Census 180 6.75 3.47 1.03 5 3.38 0.77

aRatios in this table are all log2-transformed.
bIn quantification of each peptide, only the PSM with the highest identification score was used as the

starting point to reconstruct chromatograms. cTo guarantee a fair comparison, we calculate the protein ratios at the group level by taking the median
of the peptide ratios.

Table 3. Comparison of the pQuant and MaxQuant Quantitation Results on the SILAC Dataa

evidence levelb protein group levelc

NaN ratios numerical ratios numerical ratios

sample-mixing ratio
(H/L)

expected
log2(ratio)

quant.
software no. all ratios no. % median S.D. no. all ratios no. NaN ratios median S.D.

1:1 0.00 pQuant 6408 1 0.01 0.01 0.27 1402 1 0.01 0.21
MaxQuant 153 2.39 0.01 0.34 6 0.03 0.26

1:2 −1.00 pQuant 7010 6 0.08 −0.86 0.31 1549 1 −0.86 0.28
MaxQuant 137 1.95 −0.89 0.39 1 −0.86 0.36

2:1 1.00 pQuant 7495 12 0.16 1.05 0.35 1655 1 1.06 0.34
MaxQuant 137 1.83 1.06 0.46 2 1.09 0.39

1:5 −2.32 pQuant 7723 20 0.26 −2.18 0.45 1697 4 −2.18 0.41
MaxQuant 191 2.47 −2.18 0.68 4 −2.18 0.67

5:1 2.32 pQuant 6753 22 0.33 2.44 0.66 1674 2 2.48 0.64
MaxQuant 123 1.82 2.40 0.96 8 2.47 0.78

1:10 −3.32 pQuant 6617 32 0.48 −3.18 0.70 1596 2 −3.18 0.60
MaxQuant 181 2.74 −3.06 1.16 6 −3.06 1.17

10:1 3.32 pQuant 6128 24 0.39 3.08 0.82 1597 3 3.11 0.74
MaxQuant 125 2.04 2.97 1.20 4 3.04 0.99

aRatios in this table are all log2-transformed.
bMaxQuant uses “evidence” to indicate a SILAC pairs in MS. A peptide sequence may have more than

one evidence, and each evidence corresponds to an individual ratio. cTo guarantee a fair comparison, we calculate the protein ratios in group level by
taking the median of the peptide ratios.
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two techniques greatly improve quantitation accuracy. The most
important technical improvement of pQuant over MaxQuant is
that pQuant selects two isotopic chromatograms with the least
amount of interference, one for the light peptide and one for the
heavy peptide, to calculate the H/L ratios. MaxQuant does not
make such distinction and may include interference signals into
ratio calculation. Furthermore, MaxQuant does not evaluate the
accuracy of peptide ratios or protein ratios. As illustrated in
Supporting Information Figure 8, it is difficult to discern which
signals are used for ratio calculation in MaxQuant.
Protein Ratios Suggesting Large Abundance Change.

Most quantitative experiments aim to identify proteins whose
abundance levels differ significantly between two conditions. For
this purpose, statistical methods such as outlier testing,39

Student’s t test,14 Bayes analysis,40 analysis of variance
(ANOVA),41 Bonferroni family-wise Type I error rate-
controlling method,42,43 Benjamini−Hochberg FDR-controlling
method,44 and q-value methods45,46 have been adopted.
Invariably, they all start from protein ratios computed by
quantitation software tools. The presence of inaccurate protein
abundance ratios and a lack of accuracy evaluation to keep them
out could distort the results of these statistical methods. Suppose
that protein ratios in a proteome-wide quantification experiment
follow a log-normal distribution,14 quantitation errors may lead
to a false positive result (a protein wrongly thought of to have a
large abundance change) by shifting a ratio away from the center
to either tail, or lead to a false negative result by affecting a ratio in
the opposite direction.
Accurate protein ratios require accurate peptide ratios,

therefore inaccurate peptide ratios are usually detected using
an outlier test and discarded. However, this is not always
effective, even for proteins with multiple peptide measurements.8

Besides, a large number of proteins (e.g., 30% of the proteins in
our SILAC data set) have only one or two peptides quantified, so
inaccurate ratios cannot be detected using an outlier testing
method. Furthermore, the accuracy of protein ratios is hardly
ever evaluated.
As illustrated in Tables 1−3, NaN protein ratios are rare in

pQuant results, and the standard deviations of protein ratios
calculated by pQuant are smaller than those by Census and
MaxQuant. In the Census and MaxQuant results, there are more
NaN or outlier ratios for proteins, suggesting significant
abundance changes. However, after manual examination of the
original data, we found that most of them are questionable.
Census relies on the determinant score (R2) as a surrogate for
accuracy evaluation of peptide ratios. If only the peptide ratios
with high R2 (>0.9, for example) are used to calculate protein
ratios, the proportion of incorrect protein ratios will decrease but
the total number of quantified proteins will also decrease and a
subset of proteins that truly have large abundance changes will be
lost.
Lastly, it is worth emphasizing that good identification results

are essential for quantitation. A protein ratio will be more
accurate if it has more correctly identified peptides.47 Meanwhile,
falsely identified proteins (or peptides) will have NaN or outlier
ratios, and these proteins may be falsely reported as having
significant abundance changes. Therefore, excellence in data
analysis for quantitative proteomics requires perfection in both
the identification and the quantitation software tools.

■ CONCLUSIONS
Minimizing the interference of coeluting ions of similar m/z
values is one of the major advantages of pQuant. This

interference problem is a very serious one and the most difficult
to solve in quantitative proteomics. Coeluting interference
signals frequently cause a large deviation (10-fold or more) in
relative protein abundance ratios. Other problems such as
arginine-to-proline conversion in SILAC samples,48 incomplete
labeling,49 retention time shifts between labeled and unlabeled
peptides, and unequal total protein input of light and heavy
samples, normally introduce a deviation of 1.5-fold or less, and
they can be avoided to a large extent by doing experiments
carefully. In our data sets, the arginine-to-proline conversion was
hardly detectable, the efficiency of 15N-labeling was about 99%,
pairs of light and heavy peptides coeluted nearly perfectly, and
the vast majority of the experimental ratios were close to the
expected values. In contrast, the interference of coeluting ions of
similar m/z was pervasive in all our data, and it is also common
for label-free quantitation11 as well asMS/MS based quantitation
(e.g., iTRAQ).10,50 Before the LC-MS technology is sophisti-
cated enough to preclude this problem, computationally
detecting and keeping out interference are critical in all
quantitation experiments.
The other advantage of pQuant is accuracy evaluation.

Although accuracy evaluation should be an integral part of
quantitation, it was largely ignored in previous software-
development efforts for quantitative proteomics. pQuant
evaluates both peptide and protein ratios. Furthermore, pQuant
provides normalized CI rather than a score, because normalized
CI intuitively and uniformly reports the accuracy for each peptide
or protein ratio.51

Through these improvements, more peptides and proteins are
quantitated with higher accuracy using pQuant, as we show in
this paper with a total of 14 data sets. pQuant supports different
full MS scan-based quantitation strategies such as SILAC and
15N-labeling. Moreover, it is compatible with various MS data
formats and identification software tools.
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