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9 ABSTRACT: De novo peptide sequencing has improved remarkably,
10 but sequencing full-length peptides with unexpected modifications is
11 still a challenging problem. Here we present an open de novo
12 sequencing tool, Open-pNovo, for de novo sequencing of peptides
13 with arbitrary types of modifications. Although the search space
14 increases by ∼300 times, Open-pNovo is close to or even ∼10-times
15 faster than the other three proposed algorithms. Furthermore,
16 considering top-1 candidates on three MS/MS data sets, Open-
17 pNovo can recall over 90% of the results obtained by any one
18 traditional algorithm and report 5−87% more peptides, including 14−
19 250% more modified peptides. On a high-quality simulated data set,
20 ∼85% peptides with arbitrary modifications can be recalled by Open-
21 pNovo, while hardly any results can be recalled by others. In summary,
22 Open-pNovo is an excellent tool for open de novo sequencing and has
23 great potential for discovering unexpected modifications in the real biological applications.
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25 ■ INTRODUCTION

26 The past decades have seen remarkable progress in proteomics.1

27 Researchers often use the mass spectrometry technology to
28 analyze biological samples, in which peptide and protein
29 identification has become the critical process. Database search
30 has long been the dominant approach to peptide and protein
31 identification. Many database search algorithms are used in the
32 routine proteome analysis such as SEQUEST,2 Mascot,3 X!
33 Tandem,4,5 Andromeda,6 pFind,7,8 MS-GF+,9 PEAKS DB,10 and
34 ByOnic.11 Generally, the essence of these methods is retrieving
35 all candidate peptides from a specified database for each
36 spectrum, which also means that a protein database is
37 indispensable.
38 An alternative method is de novo peptide sequencing, which
39 deduces peptide sequences directly from MS/MS data without
40 any databases. Whole peptide sequences are generated based on
41 themass difference of consecutive experimental MS/MS peaks. If
42 there is no protein database available for the sample to be studied,
43 de novo sequencing becomes an essential approach to analyzing
44 MS/MS data. Multiple de novo peptide sequencing algorithms
45 have been reported in recent years such as Lutefisk,12

46 SHERENGA,13 PEAKS,14 NovoHMM,15 PepNovo,16,17

47 pNovo,18,19 UniNovo,20 and Novor.21

48 With the development of high resolution mass spectrometry,
49 there has been an increasing emphasis on improving the

50identification rate of MS/MS data. More interpreted spectra
51are of great help to the identifications of peptides and proteins as
52well as the discovery of novel genes in proteogenomics.22,23 A
53few studies showed that mutations and unexpected modifications
54are the principal factors leading to the unassigned mass spectra,
55while a potential advantage of de novo sequencing is to solve
56such problems, that is, discovering mutations and unexpected
57modifications.22,24−26 Mutations are naturally considered in de
58novo sequencing algorithms, but detecting unexpected mod-
59ifications is more challenging.
60In previous studies, a few tag-based approaches have been
61proposed to identify peptides with unexpected modifications.
62Sequence tags or full-length de novo reconstructions are
63extracted first and then the intact peptide sequences are
64identified by expanding sequence tags or recovering the de
65novo reconstructions based on the protein databases. Mann et al.
66proposed a tag-based method in 1994,27 and a few similar
67approaches are now available such as GutenTag,28 MultiTag,29

68InsPecT,30 MODi,31 Paragon,32 DirecTag,33 and PEAKS DB.10

69However, detecting peptides with unexpected modifications
70only via de novo sequencing is still an immense challenge. First,
71 f1as shown in Figure 1, if all thousands of modifications in
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72 Unimod34 are considered in de novo peptide sequencing, the

73 search space will increase by two orders of magnitude so that few

74 proposed de novo sequencing algorithms can deal with such a

75 challenge. It is also shown in Figure 1 that if peptide candidates

76 are restricted to a protein database, the search space of database

77 search is smaller by∼15 orders of magnitude than that of de novo

78 sequencing. Second, compared with the database search

79 approach, correct peptides in de novo sequencing are more

80 difficult to be distinguished from other similar candidates

81 because of the remarkable difference of search space. Therefore,
82 designing score functions for de novo sequencing, especially for

83open de novo sequencing with thousands of unexpected
84modifications, is far more challenging.
85In this paper, we present a novel method named Open-pNovo
86to address the problem of de novo peptide sequencing with
87thousands of protein modifications in Unimod. On the basis of
88our previous work of pNovo and pNovo+,18,19 we propose a new
89dynamic programming method to detect modification sites and
90then output optimal paths. In addition, a RankBoost-based
91scoring function35 is designed to distinguish correct PSMs from
92incorrect ones effectively. Open-pNovo is tested on three real
93MS/MS data sets and three simulated ones, and performs
94favorably compared with the latest versions of pNovo+, PEAKS,

Figure 1.Comparison of numbers of peptide candidates in de novo sequencing and database search. For each approach, nonmodified peptides, as well as
peptides with at most one modification from Unimod, are counted, respectively. One-thousand precursor ions are uniformly sampled from 1000−2000
Da in aHeLa data set ofMann lab (theM-DS1 data set as described in the Results section). Peptide candidates in de novo sequencing are arbitrary amino
acid sequences whose masses differ from the corresponding precursor ions within a tolerance window from −20 ppm to 20 ppm, while peptide
candidates in database search are counted from a human database downloaded from UniProt using nonspecific enzyme digestion. The average number
of nonmodified candidates is 1.35E20 in de novo sequencing and 2.66E4 in database search, and the average number of modified candidates is 3.58E22
in de novo sequencing and 1.70E6 in database search.

Figure 2.Workflow of Open-pNovo. (a) Example of an original spectrum from a peptide AN(Met[H])VR, where Met[H] denotes the methylation of
Histidine residue. (b) Spectrum graph (DAG) for the original spectrum. The black edges denote the normal edges, while the red ones denote the
modification ones. If we do not consider the red edge, the correct peptide cannot be obtained. (c) Normal peptides and the modified peptides are
obtained by finding k longest paths in DAG. (d) Score function is trained by RankBoost using three features. (e) Candidate peptides are output and
sorted by the final scores, which are obtained by RankBoost. Note that when translating the original spectrum a to the spectrum graph b, each peak is
translated into two vertices rather than one vertex in panel b.
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95 and Novor. In most cases, considering the top-10 results, more
96 than 90% of all correct peptides can be recalled by Open-pNovo,
97 while the speed is comparable to pNovo+ and even ∼10-times
98 faster than PEAKS, although the search space is ∼300-times
99 larger than the conventional de novo sequencing algorithms.

100 ■ METHODS

101 Open-pNovo Workflow

102 The approach taken in Open-pNovo can be summarized into
103 four steps: (1) preprocessing MS/MS data, (2) constructing a
104 directed acyclic graph (DAG) for each spectrum, (3) finding the
105 k longest paths using a dynamic programming method, and (4)
106 scoring each peptide-spectrum match. The workflow of Open-

f2 107 pNovo is shown in Figure 2.
108 Preprocessing MS/MS Data

109 In the first step, monoisotopic peaks are recognized and then
110 transformed to charge +1 according to their original charge
111 states, and peaks corresponding to the precursor ions and the
112 neutral loss ions, such as the losses of ammonia and water, are all
113 removed. The details of the first step were shown in the previous
114 study,19 and the remaining three steps will be introduced in the
115 following sections.
116 Constructing a DAG for Each Spectrum

117 First, peaks in each spectrum are transformed to vertices with
118 nominal masses and weights. Given a peak pwhose mass ism and
119 the mass of the precursor ion is M, if only b and y ions are
120 considered, then two vertices are generated, whose masses are m
121 − 1 andM−m, respectively (all peaks are singly charged after the
122 preprocessing step). The weights of these two vertices are both
123 set as the natural logarithm of the intensity of the original peak p.
124 After all peaks are converted, a source vertex and a destination
125 vertex are added in the spectrum graph, whose masses are set as
126 zero andM− w, respectively, where w denotes the summed mass
127 of a water molecule and a proton, and the weights of both vertices
128 are set as zero.
129 Second, the vertices are connected by two types of edges. For a
130 pair of vertices u and v (assuming the mass of u is less than that of
131 v), if the mass difference is equal to the mass of one or two amino
132 acid residues, a directed edge is added from u to v. Such edges are
133 called “normal” edges. On the other hand, if themass difference is
134 equal to the mass of an amino acid residue with a modification
135 (e.g., the mass of a methylation of Histidine residue is ∼151 Da),
136 then the other type of directed edge, called “modified” edges, is
137 added from u to v. In this study, all modified edges are generated
138 based on a predefined modification list, for example, all
139 modifications from Unimod,34 which contains 1356 types of
140 modifications until June 2016.
141 Figure 2b shows a spectrum graph containing two types of
142 edges. Modified edges, denoted by the red ones, are not
143 considered by the conventional de novo sequencing method, so
144 the correct peptide AN(Met[H])VR where Met[H] denotes the
145 methylation of Histidine residue cannot be obtained in routine
146 de novo sequencing analysis. However, it can be sequenced if
147 modified edges are considered in this study.

148For simplicity, the open de novo sequencing problem is shown
149in Figure 2b with only one additional modified edge. However,
150the practical problem is far more challenging because of the
151significant growth of edges, especially for the modified ones, in
152the spectrum graph. If only ten modifications are considered, the
153average percentage of modified edges in each spectrum graph is
154only 25% (112/456), while the corresponding figures grows to
15575% (1043/1387) if all 1356 modifications in Unimod are
156considered. However, there is only one unexpected modification
157on each peptide in most cases,36 which means that among the
158thousands modified edges in one spectrum graph, only one is
159correct. Therefore, to distinguish the correct modified edges
160from thousands of modified edges is a very challenging task.
161In Open-pNovo, the frequencies of modifications, which can
162be learnt automatically by iteratively running Open-pNovo or
163found by database search, are considered by Open-pNovo to
164distinguish the correct modification type from the wrong ones.
165The weight of a normal edge (u,ν) is assigned by the weight of v,
166while the weight of a modified edge (u,ν) is assigned by the
167weight of v multiplied by the frequency of the corresponding
168modification, as shown in eq 1. The frequency of a modification is
169assigned by the number of this modification divided by the
170number of all detected modifications. When there are more than
171one modification with similar masses in one modified edge, the
172frequency is assigned by the maximum one of all of these
173modifications:
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175In eq 1, w(u,ν) is the weight of edge (u,v), wv is the weight of vertex
176v,M(μ,ν) is the modification set of modified edge (u,v), and f(m)
177is the frequency of modification m and is between 0 and 1.

178Finding the k Longest Paths

179The k longest paths from the source to the destination should be
180found in the graph. Two types of paths are defined as valid
181solutions: one is called normal path if it consists of only normal
182edges, and the other is called modified path if it contains one
183modified edge. In principle, multiple modifications can also be
184supported, but only onemodified edge is allowed in finding paths
185in this study. First, very few spectra contain multiple unexpected
186modifications, which is the reason why most open database
187search algorithms also allow at most one unexpected
188modification.10,23 Second, if two or more modifications are
189considered, the error rate will increase significantly.36,37 Despite
190all this, the search space of Open-pNovo also involves peptides
191with a few commonmodifications, that is, carbamidomethylation
192of cysteine and oxidation of methionine, and with one another
193unexpected modification, where the common modifications can
194be treated as regular amino acids.
195The weight of a path is defined as the sum of its edge weights
196shown in eq 2:
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198

199 The k longest normal paths and the k longest modified paths
200 are to be found in Open-pNovo. It is easy to prove that if a path is
201 one of the top-k longest paths from the source vertex s to the
202 destination vertex t, then the subpath from s to every other vertex
203 v must be one of the top-k longest paths from s to v, which is
204 shown in eqs 3 and 4:
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207 In eqs 3 and 4, di(ν) and di′(ν) are the weights of the ith longest
208 normal path and the ith longest modified path from source vertex
209 to v, respectively. InvE1(ν) and InvE2(ν) denote two sets of all
210 preceding vertices whose edges (u,v) are normal edges and
211 modified edges, respectively, and uj is the jth index of the vertex u

212 where = + ∑ −i u1 ( 1)j j . Therefore, when the longest paths

213 from s to each vertex are computed in the graph, the top-ranked
214 paths to all preceding vertices starting from s can be precomputed
215 and stored, and then a dynamic programming method can be
216 used to solve the problem. The details of the dynamic
217 programming method are shown in the following section.
218 Dynamic Programming Method To Find k Longest Paths

219 First of all, all vertices are sorted by mass in ascending order. For
220 each vertex ν, the k longest normal and modified paths can be
221 computed by the paths of all its preceding vertices. For each
222 preceding vertex u, if (u,ν) is a normal edge, then each of the k
223 longest normal paths to u appended by (u,ν) is a candidate of the
224 k longest normal paths to v, and each of the k longest modified
225 paths to u appended by (u,ν) is a candidate of the k longest
226 modified paths to v. On the other hand, if (u,ν) is a modified
227 edge, then only each of the k longest normal paths to u appended
228 by (u,ν) is a possible solution to the k longest modified paths to v.
229 After all vertices are transversed in the graph, the longest paths
230 are stored at the destination vertex. At last, backtrack all vertices
231 on the optimal paths iteratively from the destination vertex to the
232 source one. In the process, each vertex v is visited by d(v) times
233 where d(v) is the degree of v. Before visiting a vertex, all the k
234 longest path candidates of the preceding vertices, both the
235 normal and the modified ones, have been computed earlier
236 because of the ascending order of the masses of the vertices, so
237 that no correct paths can possibly be omitted. This algorithm is
238 called pDAG-I. An example explaining how the algorithm works
239 is shown in the Supporting Information.
240 Antisymmetry Restriction

241 Algorithm pDAG-I is efficient to find peptides with one
242 unexpected modification from a relatively small modification
243 set. However, if a large modification set is used, pDAG-I is not
244 accurate enough. The reason is that two vertices are easily to be
245 randomly connected by one modified edge if more modifications
246 are considered, so that high-weight vertices generated from the

247same peak are more likely to be appeared in one path. However,
248such conditions can probably lead to wrong results. When a
249spectrum graph is constructed, each peak is converted to two
250vertices (called a cognate vertex pair) because the ion type (e.g., b
251or y) of the peak is indeterminate. Nevertheless, at most one
252vertex in each pair is correct in most cases, which is equivalent to
253that one peak matches with at most one ion from a peptide. This
254is why an antisymmetry-path-finding problem is modeled in
255earlier studies.13,38 The antisymmetry restriction means that only
256paths without any cognate vertex pairs are treated as valid
257solutions.
258Chi et al.19 suggested that the antisymmetry restriction can be
259removed in high resolution data with little loss of accuracy but
260with great speedup; however, when considering all modifications
261in Unimod,34 the graph becomes much more complex and the
262antisymmetry restriction should be reconsidered. According to
263our statistics in all three real data sets, 15.5% of the total paths
264contain at least one cognate vertex pair, while the figure of the
265normal paths is 6.6%; however, there are only 7.0% of the spectra
266containing a peak that matches more than one types of ions in the
267real data sets. If the antisymmetry restriction is considered, the
268average rank of the correct paths in 15.0% of the spectra moved
269up from 73 to 29 and 8.1% of the correct peptides for these
270spectra can only be recalled under the antisymmetry restriction.
271Figure S1 shows that distributions of normal paths and modified
272paths containing at least one cognate vertex pair. As a result, the
273antisymmetry restriction is essential when unexpected mod-
274ifications are considered in de novo sequencing.
275Bit Vector Approach

276As shown in the previous study,38 the time complexity of finding
277the longest antisymmetric paths is O(|V∥E|). However, pDAG-I
278can be modified to satisfy the antisymmetry restriction by
279removing the invalid paths in real time during the iterative
280process. Because correct paths still often rank better than most
281random ones, the algorithm can store a relatively larger number
282of intermediate results, and finally the correct peptides can
283probably be recalled. When the paths to vertex ν are computed, it
284can be checked whether each path p to the preceding vertices of ν
285already contains the cognate vertex of ν; if so, p will not be
286considered as a valid longest path to ν. Because of the limited
287number of peaks (generally not greater than 300 after the
288preprocessing procedure), a bit vector approach can be used to
289record whether each peak has been used in each path as shown in
290Figure S2. The time complexity of judging if a cognate vertex has
291been visited is only O (1), while only ∼13 MB of memory are
292adequate.
293Loser Tree to Speedup

294A further improvement is using a loser tree39 to effectively
295generate the k longest paths to ν, which is based on the fact that
296the k longest paths to all of the preceding vertices of vertex ν are
297sorted. In short, assuming that the preceding vertices of ν are in S

298= {u1, u2,...,ud}, d is the in-degree of v, and k longest paths {pi1, pi2,
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299 ..., pik} to each ui in S are sorted, then the longest path to ν can be

300 generated from P = {p11, p21, ..., pd1}. If the path is from the vertex

301 uj, then P is updated to be P − {pj1 } + {pj2}, and the second path
302 of ν should be generated in the updated P. If P is maintained as a
303 loser tree, the time complexity of finding k paths to vertex v is O
304 (klogd), where d is the in-degree of v. The improved algorithm is
305 called pDAG-II. The pseudo codes of pDAG-I and pDAG-II are
306 shown in the Supporting Information.
307 Analysis of the Time Complexity

308 The time complexity analysis of pDAG-II is O (k|V| + |E| + k|V|
309 log d ̅), where E is the edge set of the graph, V is the vertex set of
310 the graph, k is the number of longest paths, and d ̅ is the average
311 in-degree. The proof is shown in the Supporting Information.
312 Selection of the Number of Longest Paths

313 Experimental results show that the run time is with a linear
314 increase when k becomes larger, while the recall rate becomes
315 stable when k is no less than 150. Therefore, correct peptides can
316 scarcely be omitted if a proper value of k is chosen in the
317 algorithm. In this study, k is set as 150 to make a balance between
318 the recall rate and the run time (shown in Table S10).
319 Refined Scoring by the RankBoost Algorithm

320 The k longest normal paths are converted to nonmodified
321 candidate peptides, and the k longest modified paths are
322 converted to candidate peptides containing one unexpected
323 modification. Then a scoring function previously proposed in
324 pNovo+ is used to evaluate the peptide-spectrum matches.19

325 Furthermore, to better distinguish nonmodified peptide from
326 modified ones, the frequencies of modifications detected in the
327 data are used. These frequencies can be calculated initially by the
328 de novo sequencing results with high original scores. In general
329 cases, peptides without any modifications or with common ones
330 are more credible than those with rare modifications.23 We use
331 the RankBoost algorithm (a machine learning scoring method35)
332 to score these candidate peptides, in which three features are
333 used as shown in Figure 2d. (1) The original score of the peptide-
334 spectrum match. (2) The frequencies of the modifications. All
335 values are between 0 and 1, and frequencies of nonmodified
336 peptides are set as 1. (3) The rank of the path corresponding to
337 the peptide (the range of this value is integers between 1 and k,
338 where k is the number of paths). A scoring model was trained on
339 the M-DS1 data set (shown in the following section), and the
340 weights of each feature were sorted automatically by the
341 RankBoost algorithm. Specifically, after learning from the
342 training set, the importance of the features are sorted as follows:
343 feature 1 > feature 2 > feature 3, which means that the original
344 score is the most important feature, the frequency of the
345 modification is the second important one. Some other features
346 are also tested, that is, the precursor mass deviation, but the effect
347 is negligible so that these features are not involved into the final
348 scoring model of Open-pNovo.
349 This scoring model is used in Open-pNovo to evaluate all
350 peptide-spectrummatches and obtain the final score shown in eq
351 5:

∑=
=

Score f s( )
i

n

i i
1352 (5)

353 In eq 5, n is the number of features, si is the value of ith feature,
354 and f i is a function of the ith feature. Specifically, f i is the step
355 function about si trained by RankBoost. The effect of the three
356 features are shown in Figure S3.

357■ RESULTS

358Data Sets

359The performance of Open-pNovo was tested on six data sets.
360The first two data sets are from HeLa cells, which are generated
361on LTQ Orbitrap Velos and Q Exactive, respectively. The third
362data set is a much larger one from budding yeast (Saccharomyces
363cerevisiae) generated on Q Exactive. All of the three data sets are
364provided by Matthias Mann’s laboratory.40,41 The open search
365mode of pFind23 and PEAKS DB10 are used to analyze the three
366data sets. The first two data sets are searched against UniProt
367human database (released in 2014−11), and the third data set is
368searched against UniProt yeast database (released in 2015−01).
369Both databases are appended with 286 common contaminant
370protein sequences. The parameters are shown in Table S1.
371Peptides with no modification or with one of the ten most
372abundant modifications were kept. The abundance of one
373modification was determined by the frequency of the
374modification. False discovery rate (FDR) was controlled at 1%
375at the peptide level for the quality assessment of the peptide−
376spectrum matches. In addition, inconsistent results of the two
377engines were removed, and three following criteria were used to
378generate test data sets. (1) The length of the peptide sequence is
379between 6 and 20 (the distribution of the peptide lengths is
380shown in Figure S4); (b) the maximum length of the gap in the
381matched ion series must be less than 2; and (c) the summed
382intensity of matched peaks is greater than 20% of the total in one
383spectrum. Finally, three data sets (referred to as M-DS1, M-DS2,
384and M-DS3) were generated, which consist of 8600, 6727, and
38545 450 spectra, respectively. All these three real data sets are high
386resolution HCD data sets.
387Besides the three real experimental data sets described above,
388another three simulated data sets were also used in this study.
389The data sets were generated in the following way. First, peptides
390were randomly generated whose lengths were between 6 and 25,
391and then one modification from Unimod34 was selected
392randomly and then added to an arbitrary legal position on the
393peptides. For example, deamidation can be added only on N, Q,
394R, or F according to the record in Unimod. Second, theoretical
395spectra with full b- and y-series were created according to the
396peptides and then split into three subsets. For each spectrum,
39710%, 15%, and 20% of the total peaks were randomly removed in
398three subsets, respectively, which was done to simulate the
399different level of fragment ion losses in the real condition. Third,
400for each data set, noise peaks were randomly added to each
401spectrum, whose intensity was 0.1-times the correct peak
402intensity and whose number was 0-, 1-, or 2-times the peaks in
403the original spectrum with equal probability of 1/3. For instance,
404noise peaks whose number was 0-times the original peaks mean
405that there were no noise peaks, and there were one-third of such
406spectra without any noise peaks in each of the three subsets.
407Finally, three simulated MS/MS data sets, S-DS1, S-DS2, and S-
408DS3, were produced, whose sizes were 7761, 7372, and 8233,
409respectively. The simulated data sets seem fairly ideal because
410they were designed to explore the capability and boundary of
411finding unexpected modifications by Open-pNovo.
412Comparison between Open-pNovo and Other Algorithms

413Open-pNovo is compared with pNovo+,19 PEAKS14 (version
4147.5), and Novor21 on the six data sets described above. Two
415different sequencing modes of pNovo+, PEAKS, and Novor are
416tested in this study. The first one is called no-modification mode,
417in which only carbamidomethylation of cysteine for the fixed
418modification and oxidation of methionine for the variable
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419 modification is considered. This mode is to simulate the most
420 popular usage of the traditional de novo sequencing tools. The
421 second one is called modification mode, in which more variable
422 modifications are specified according to the different character-
423 izations of the data sets. For M-DS1 and M-DS2, six variable
424 modifications including oxidation of methionine, carboxymethy-
425 lation of cysteine, acetylation of N-terminus, carbamylation of N-
426 terminus, pyro-glu of N-terminal Q, and pyro-glu of N-terminal
427 E are specified, which are among the ten most abundant
428 modifications according to the result of both pFind and PEAKS
429 DB and cover 86% of all results. For M-DS3, four modifications
430 including oxidation of methionine, acetylation of N-terminus,
431 carbamylation of N-terminus, and pyro-glu of N-terminal Q are
432 specified, which cover 91% of all results. For each of the
433 simulated data sets, ten most abundant modifications are
434 specified, which cover 9.7%, 10.3%, and 10.0% of all results.
435 PEAKS and Novor cannot support so many rare variable
436 modifications, so they are not tested in the modification mode in
437 simulated data sets. Parameters for the modification search mode
438 on the simulated data sets are shown in Table S2.
439 A peptide is correctly recalled if all of its residues, both the
440 common and the modified ones, are correct according to the
441 annotation of the data sets. In addition, if the mass of a residue
442 reported by the algorithm is identical with that in the annotation,
443 for example, Q and deamidated N, then the peptide is also
444 considered to be correctly recalled.
445 The comparison of Open-pNovo and the two modes of other

t1 446 algorithms on all six data sets are shown in Table 1. Open-pNovo
447 performed favorably in terms of the recall rate on all of the six
448 data sets. On the real MS/MS data sets, the average recall rate of
449 Open-pNovo is 76.3%, which is 5.3% more than that of the no-
450 modification mode of pNovo+, the best algorithm in the test of
451 the no-modification mode. In terms of the modification search
452 mode on the real MS/MS data sets, PEAKS performs the best but
453 Open-pNovo still reported 6.7%more than PEAKS. The result of
454 pNovo+ and Novor in the modification mode is slightly less than
455 the no-modification mode because they do not allow setting only
456 one modification on each peptide, so peptides with multiple
457 modifications interfered in the search space of these two
458 algorithms.
459 The tools performed a little differently on the simulated data
460 sets. For Open-pNovo, the percentages of the sequenced

461peptides were even higher than those on three real MS/MS
462data sets, although the simulated data sets contains far more
463complex modifications. By contrast, the recall rate of the no-
464modification mode of pNovo+ was less than 1% of the total,
465which is reasonable since all spectra are corresponding to the
466randomly modified peptides. However, there were still a few
467peptides recalled by the no-modification mode of pNovo+
468because the masses of some residues with modifications are equal
469to some other amino acids, for example, the masses of both Glu
470and deamidated Gln residues are around 129 Da. Even if ten
471modifications were specified in pNovo+ and the percentages of
472the results containing these ten modifications are only 9.7%,
47310.3%, and 10.0% in S-DS1, S-DS2, and S-DS3, respectively, the
474search space was yet too incomplete so that the recall rate was
475still less than 10%. PEAKS and Novor also reported a few correct
476peptides with the no-modification sequencing mode, and the
477modification mode is not tested because such large number of
478rare modifications is not supported by these two algorithms.
479However, it can be reasonably inferred that hardly any result can
480be reported for all traditional de novo sequencing algorithms due
481to the extreme incompleteness of the search space.
482When only considering the modified results on the real data
483 t2sets, Open-pNovo also performs the best as shown in Table 2.
484The recall rate of top-1 results of Open-pNovo is ∼62%, while
485those of pNovo+ and PEAKS are only ∼38%, and Novor is only
486∼14% in the modified data sets. However, when only considering
487the unmodified results, as shown in Tables 1 and 2, Open-pNovo
488identified 5116 (6703−1587), 3267, and 29 357 in M-DS1, M-
489DS2, and M-DS3, while the figures of pNovo+ are 5331, 3416,
490and 30 066, and those of PEAKS are 4947, 3251, and 29 281. The
491performance of Open-pNovo is still better than PEAKS but
492slightly inferior to pNovo+ because there are more similar
493modified peptides to interfere with the correct unmodified
494peptide in open de novo sequencing.
495 f3Figure 3 shows the cumulative curves of the number of correct
496sequences from top-1 to top-10 candidate sequences on the three
497real data sets. Open-pNovo still performs the best regardless of
498how many top-ranked peptides are considered in the results.
499Because the search space of Open-pNovo is hundreds of times
500larger than the common de novo sequencing methods, correct
501peptides may be easily interfered with by other similar
502competitors, so that designing a scoring function to distinguish

Table 1. Comparing Successful De Novo Peptide Sequencing Results between Open-pNovo and Other Algorithms When
Considering Top-1 Results

data sets open-pNovo pNovo+ pNovo+ (Modsa) PEAKS PEAKS (Mods) Novor Novor (Mods)

M-DS1 (8600) 77.9% (6703) 71.6% (6159) 71.7% (6170) 67.4% (5798) 70.4% (6053) 37.7% (3243) 34.2% (2940)
M-DS2 (6727) 74.6% (5020) 59.3% (3992) 62.5% (4203) 56.9% (3825) 64.5% (4341) 34.7% (2335) 33.5% (2256)
M-DS3 (45 450) 76.3% (34 659) 74.5% (33 879) 68.2% (31 019) 73.1% (33 226) 72.8% (33 080) 47.4% (21 527) 43.2% (19 616)
S-DS1 (7761) 85.6% (6641) 0.6% (45) 9.1% (704) 0.4% (34) 0.2% (17)
S-DS2 (7372) 78.1% (5756) 0.7% (48) 8.5% (625) 0.5% (36) 0.2% (18)
S-DS3 (8233) 69.7% (5740) 0.6% (51) 7.5% (616) 0.5% (38) 0.2% (15)

aThe second search mode in which more variable modifications is specified in pNovo+, PEAKS, and Novor.

Table 2. Comparing the Recall Rate of De Novo Sequencing Results between Open-pNovo and Other Algorithms on the PSMs
Only with Modifications When Considering Top-1 Results

data sets Open-pNovo pNovo+ pNovo+ (Modsa) PEAKS PEAKS (Mods) Novor Novor (Mods)

M-DS1 (2440) 65.0% (1587) 33.9% (828) 49.4% (1205) 34.9% (851) 51.1% (1247) 13.3% (325) 14.3% (350)
M-DS2 (2616) 67.0% (1753) 22.0% (576) 47.7% (1248) 21.9% (574) 46.0% (1204) 9.6% (251) 13.2% (345)
M-DS3 (10 047) 52.8% (5302) 38.0% (3813) 45.1% (4536) 39.3% (3945) 51.1% (5132) 18.3% (1841) 17.9% (1801)

aThe second search mode in which more variable modifications is specified in pNovo+, PEAKS, and Novor.
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503 them is much more difficult. Take Figure 3a as an example, when
504 considering the top-10 candidates, the identified spectra of
505 pNovo+ (Mods) are almost as many as that of Open-pNovo;
506 however, if only the top-1 candidates are considered, the result of
507 pNovo+ (Mods) are significantly less than those of Open-pNovo
508 and even slightly less than those of the no-modification mode of
509 pNovo+. In terms of the modification mode of pNovo+ and
510 PEAKS, the difference between top-1 and top-2 is much larger,
511 which can be shown in the curves. However, the trends of the
512 other three curves (Open-pNovo, pNovo+, and PEAKS) are
513 quite consistent to each other, which shows that the RankBoost-
514 based scoring function provides more powerful ability to
515 distinguish correct PSMs from other random matches.
516 The RankBoost algorithm ranked more correct peptides,
517 especially for the top-1 results: the use of the RankBoost
518 algorithm yielded a relative improvement of 27.3%more PSMs in
519 total. For PSMs with modified peptides only, the improvement is
520 12.9%. The details of the effect of the RankBoost algorithm are
521 shown in Table S3.

f4 522 Figure 4 shows the comparison of the maximum sequence tags
523 in the top-1 results identified by Open-pNovo, pNovo+, PEAKS,
524 Novor, and PepNovo.16 The sequence tags identified by Open-
525 pNovo are slightly longer than pNovo+ and PEAKS and much
526 longer than Novor and PepNovo. The ratio of the sequence tags

527identified by PepNovo whose lengths are longer than 8 is low
528because PepNovo considers the gaps of N-terminus and C-
529terminus, and the percentages of the top-1 results with no gaps
530are only 29.7%, 34.3%, and 40.3% on M-DS1, M-DS2, and M-
531DS3.
532Consistency Analysis

533The comparison of the correct top-1 results of Open-pNovo,
534 f5pNovo+, and PEAKS was shown in Figure 5. About 96% of the
535pNovo+ result and 90% of the PEAKS result can also be obtained
536by Open-pNovo. The result of pNovo+ is more consistent with
537that of Open-pNovo because they share the same scoring
538function (partially in Open-pNovo). We find that the other
539results identified only by Open-pNovo are all modified results,
540which can not be recalled by pNovo+ or PEAKS in the no-
541modification mode.
542Modification Analysis

543 f6Figure 6 and Tables S4−S9 show the number of correct peptides
544with different modifications recalled in the top-10 candidates. In
545most cases, Open-pNovo gives more correct peptides than
546others, and few modifications can be detected by pNovo+,
547PEAKS, or Novor if no modifications are specified, except
548deamidation on Gln’s and Asn’s, which leads to the same masses
549of Glu and Asp, respectively. When more modifications were
550added, more correct PSMs with modifications can be reported,
551but still inferior to that of Open-pNovo because the scoring
552functions in the traditional de novo sequencing algorithms only
553aimed at peptides without unexpected modifications. In addition,
554modifications with similar masses can also be effectively
555distinguished in Open-pNovo. Figure S5 gives an example of
556two PSMs with very similar peptide sequences but different
557modifications. If algorithms only considered carbamidomethy-
558lation (one of the most common modifications), both pNovo+
559and PEAKS gave a wrong peptide VNQLGSVTESLEAC(+57)K

Figure 3. Cumulative curves of the number of correct sequences among
the top-1 to top-10 candidates from all algorithms on (a)M-DS1, (b)M-
DS2, and (c) M-DS3. In all three real data sets, the top-10 recall of
Open-pNovo is 93.7%, while the corresponding figures for pNovo+ and
PEAKS are 85.4% and 82.0%, respectively, and 91.2% and 86.9% for
pNovo+ (Mods) and PEAKS (Mods), respectively. Only the top-1
results are reported by Novor: the recall of three real data sets are 37.7%,
34.7%, and 47.4% for the no-modification mode, and 34.2%, 33.5%, and
43.2% for the modification mode, respectively.

Figure 4. Comparison of identifications with the maximum correct
sequence tags in the top-1 results of Open-pNovo, pNovo+, PEAKS,
Novor, and PepNovo on (a) M-DS1, (b) M-DS2, and (c) M-DS3.
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560 (Figure S5a); however, Open-pNovo reported another peptide
561 VNQIGSVTESLQAC(+58)K with a better peptide−spectrum
562 match, which is identical with the result given by the two open
563 database search algorithms, pFind and PEAKS DB (Figure S5b).

564Furthermore, when carboxymethylation is specified, the correct
565peptide can also be given by pNovo+ and PEAKS. This example
566shows that a more comprehensive search space is the basis of
567obtaining more correct results. If the search space is insufficient, a

Figure 5. Comparison of the correct top-1 results of Open-pNovo, pNovo+, and PEAKS on (a) M-DS1, (b) M-DS2, and (c) M-DS3.

Figure 6. Distribution of correct PSMs on each type of modification obtained by Open-pNovo, pNovo+, and PEAKS on (a) M-DS1, (b) M-DS2, and
(c) M-DS3.

Table 3. Run Time Comparison between Open-pNovo and Other Algorithms on Six Data Setsa

data sets Open-pNovo pNovo+ pNovo+ (Mods) PEAKS PEAKS (Mods) Novor Novor (Mods)

M-DS1 62.9 42.5 43.7 420.0 480.0 10.0 11.0
M-DS2 52.0 34.4 36.0 300.0 420.0 9.0 9.0
M-DS3 258.1 166.1 177.0 2280.0 2820.0 37.0 39.0
Avg.b 162.9 250.1 236.8 20.3 16.3 1085.3 1030.1
S-DS1 151.1 108.5 227.6 900.0 15.0
S-DS2 127.1 90.2 185.1 960.0 14.0
S-DS3 146.8 103.1 221.3 1020.0 14.0
Avg. 55.0 77.4 36.9 8.1 543.4

aAll of the software packages were executed on the same PC (Dell Optiplex 9010, Intel(R) Core(TM) i7−4770 CPU at 3.40 GHz, 12GB Memory).
bThe average number of spectra can be processed in one second.
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568 similar but incorrect result is more likely to be obtained. In
569 addition, a more discriminating scoring function is also
570 indispensable so that correct peptides can still be distinguished
571 from random ones in a more comprehensive search space.

572 Run Time Analysis

573 The run time comparison of Open-pNovo, pNovo+, PEAKS,
t3 574 and Novor is shown in Table 3. Open-pNovo can process ∼163

575 spectra per second on the real data sets and ∼55 spectra per
576 second on the simulated data sets, which means that Open-
577 pNovo has potential for real time spectral analysis in shotgun
578 proteomics. Although the search space is hundreds of times
579 larger, Open-pNovo is a bit faster than pNovo+ and 8−10-times
580 faster than PEAKS. Novor is the fastest one in our experiment,
581 which is mainly due to that only the first candidate of each
582 spectrum is reported. Actually, if only one temporary path is kept
583 in the algorithm and only the first candidate of each spectrum is
584 reported in Open-pNovo, it can process ∼1105 spectra per
585 second on the real data set, which is still slightly faster than
586 Novor. The recall rate of Open-pNovo in such condition is 52%,
587 while the corresponding figure of Novor is 45%. It can also be
588 inferred that the recall rate of Novor is lower than that of other
589 algorithms because of the lower number of temporary results.
590 On the simulated data sets, the average in-degree of all vertices
591 is only 4.1, while on the real data sets, it is up to 14.7 (Figure S6).
592 As a result, the simulated spectra are fairly simpler than the real
593 MS/MS data. However, all four algorithms run more slowly in
594 the simulated spectra than the real ones, which is mainly due to
595 their different peptide length distributions (the upper bounds of
596 the lengths on the real and simulated data sets are 20 and 25,
597 respectively). As shown in Figure S7, the average time per
598 spectrum grows exponentially when the peptide length increases,
599 and the time used on sequencing peptides with length greater
600 than 20 is ∼64% of the total.

601 ■ DISCUSSION

602 In this paper, we presented a new de novo sequencing tool called
603 Open-pNovo, which can sequence peptides with any one of the
604 thousands of modifications that are predefined in a database such
605 as Unimod. On both the real and the simulated data sets, Open-
606 pNovo performs favorably compared with two sequencing
607 modes of pNovo+, PEAKS, and Novor. On the real data sets, the
608 recall rate on the top-1 candidate sequences of Open-pNovo is
609 ∼9% more than that of pNovo+, ∼7% more than that of PEAKS,
610 and ∼79% more than that of Novor. On high-quality simulated
611 data set, the recall rate on the top-1 candidate sequences of
612 Open-pNovo is as high as ∼85%, while few results can be
613 reported by other tested algorithms because that the common
614 methods are not designed for the open de novo sequencing of
615 peptides with thousands of modifications.
616 On the real data sets, the speed of Open-pNovo is comparable
617 with that of the twomodes of pNovo+ and even∼10-times faster
618 than PEAKS, although the search space is ∼300-times larger; on
619 the simulated data sets, Open-pNovo is nearly twice as fast as the
620 modification mode of pNovo+. A possible reason why pNovo+ is
621 slower than Open-pNovo on the simulated data sets is that
622 Open-pNovo can process long peptides more efficiently with the
623 algorithm pDAG-II explained in the Methods section. De novo
624 sequencing of longer peptides is essential because more valuable
625 information tends to be carried.
626 The false discovery rates (FDRs) of Open-pNovo, pNovo+,
627 PEAKS, and Novor are also analyzed on three complete real data
628 sets.40,41 Results identified by database search with FDR ≤ 1% at

629the peptide level are used to evaluate the FDR of de novo
630sequencing. If a PSM is consistent with the results of database
631search, it is considered correct, otherwise incorrect. The value of

+
no. correct results

no. correct results no. incorrect results
can be used to estimate the FDR

632of de novo sequencing. Figure S8 shows the FDR curves of four
633algorithms; the FDRs of Open-pNovo and PEAKS with high
634score results are ∼10%, while the FDRs of all four algorithms
635with whole results are ∼50%.
636Therefore, the error rate control of amino acids on a
637proteome-scale may be more realistic. The precision and recall
638rates of the amino acids identified by Open-pNovo and PEAKS
639are shown in Figure S9. When the recall rate is ∼50%, the
640precision rates of Open-pNovo and PEAKS are ∼95% and
641∼90%, respectively.
642In summary, Open-pNovo can be an efficient tool to de novo
643sequence the modified peptides, and it can be downloaded from
644the following Web site: http://pfind.ict.ac.cn/software/pNovo/
645Open-pNovo_v1.0.exe.
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