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Abstract—Scalability considerations drive the evolution of
switch design from output queueing to input queueing and further
to combined input and crosspoint queueing (CICQ). However,
CICQ switches with credit-based flow control face new challenges
of scalability and predictability. In this paper, we propose a novel
approach of rate-based smoothed switching, and design a CICQ
switch called the smoothed buffered crossbar or sBUX. First,
the concept of smoothness is developed from two complementary
perspectives of covering and spacing, which, commonly known
as fairness and jitter, are unified in the same model. Second, a
smoothed multiplexer sMUX is designed that allocates bandwidth
among competing flows sharing a link and guarantees almost ideal
smoothness for each flow. Third, the buffered crossbar sBUX is
designed that uses the scheduler sMUX at each input and output,
and a two-cell buffer at each crosspoint. It is proved that sBUX
guarantees 100% throughput for real-time services and almost
ideal smoothness for each flow. Fourth, an on-line bandwidth
regulator is designed that periodically estimates bandwidth de-
mand and generates admissible allocations, which enables sBUX
to support best-effort services. Simulation shows almost 100%
throughput and multi-microsecond average delay. In particular,
neither credit-based flow control nor speedup is used, and arbi-
trary fabric-internal latency is allowed between line cards and the
switch core, simplifying the switch implementation.

Index Terms—Buffered crossbar, scheduling, smoothness,
switches.

I. INTRODUCTION

THE EVOLUTION of switch design is driven by two
challenging and often conflicting goals: scalability, and

predictability. While output-queued (OQ) switches can provide
perfect predictability [44], they are not scalable since an
OQ switch requires that memory runs at least times faster
than external links; i.e., a speedup of at least is needed. In
contrast, input-queued (IQ) crossbar switches require no such a
large memory speedup, and their predictability has been greatly
improved by extensive research in the past decade [2], [3] [5],
[7], [10], [12], [22], [24], [25], [27], [28], [39]. But IQ crossbar
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switches require a scheduler of high computing complexity,
either to provide 100% throughput for best-effort or real-time
services, or to provide perfect or performance emulation of OQ
switches. In particular, a speedup of two seems inevitable both
in principle and in practice, since input and output contentions
have to be resolved simultaneously. To further improve scal-
ability, the combined input- and crosspoint-queued (CICQ)
switch is proposed, and is the focus of this paper.

The CICQ switch is usually implemented as a buffered
crossbar, with virtual output queues (VOQs) at inputs and
limited buffers at crosspoints. By distributed input and output
scheduling at entries and exits to the switch core, a CICQ switch
resolves input and output contentions separately by simple
schedulers, in a distributed and parallel manner. This implies
better scalability than an IQ crossbar switch. Since the on-chip
crosspoint buffer is small, flow control is needed to prevent
buffer overflow and cell loss. At present the credit-based flow
control is predominantly used in CICQ switches to coordinate
input and output scheduling [23].

CICQ switches attract intensive research that is conducted in
the same way of crossbar study: throughput-oriented, OQ switch
emulation-oriented, and guarantee-oriented.

In throughput-oriented research, various combinations of
simple input and output schedulers have been studied by
simulation, showing 100% throughput under uniform work-
loads, but less than 100% under non-uniform workloads
[19], [29] [33], [37], [38], [43]. It is proved that a CICQ
switch with longest-queue-first input schedulers, round-robin
output schedulers, and one-cell crosspoint buffers, achieves
100% throughput under any admissible workload with each
input-output pair loaded no more than [19]. With a
speedup of two, it is proved that a buffered crossbar employing
any work-conserving input and output schedulers can achieve
100% throughput [11], even under asynchronous packet-based
scheduling [34]; by adopting a finite crosspoint buffer with size

, the speedup can be reduced to [14].
In OQ switch emulation-oriented research, by extension of

the techniques used for crossbar switches [10], [22], it is proved
that buffered crossbar switches, with a speedup of two, can emu-
late an OQ switch that employs any push-in, first-out queueing
policy such as first-in-first-out and strict-priority, or just keep
the switch work-conserving [11], [26], [42].

In guarantee-oriented research, a distributed packet fair
queueing buffered crossbar architecture is proposed, and with
modest speedup support, its bandwidth and delay performances
are shown by simulation to approximate those of an OQ switch
employing fair queueing [40]. The technique of network calculus
is applied to determining the amount of bandwidth that must be
allocated to a flow so as to guarantee its delay upper bound [13].
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In particular, to guarantee this allocated bandwidth for this flow,
the number of credits required, or the crosspoint buffer capacity,
shall be at least the product of the required bandwidth and the
total fabric-internal round-trip time of this flow.

Actually, the coupled effect of fabric-internal latency and
credit-based flow control is often neglected by most previous
research. Since a multi-terabit switch must be distributed over
multiple racks, the fabric-internal latency is increased consider-
ably along with the distance between line cards and the switch
core [8], [31]. For example, a 4-Tb/s CICQ packet switch is
distinguished with a large fabric-internal latency by packaging
up to 256 10-Gb/s (OC-192) line cards into multiple racks, with
a distance of tens to hundreds of feet between line cards and the
switch core [1]. Large fabric-internal latency, ifnot properly dealt
with, degrades sharply the performance of a crossbar switch [32].
With credit-based flow control, an arbitrarily small crosspoint
buffer can guarantee no cell loss; but to guarantee bandwidths to
flows [13], or to guarantee input work conservation and output
full utilization [1], [20], the size of each crosspoint buffer shall
be at least the product of the link speed and the fabric-internal
round-trip time, and the size of total crosspoint memory will be

times large since there are crosspoint buffers in a switch.
Therefore, CICQ switches with credit-based flow control

face new challenges of scalability and predictability. Large
crosspoint buffer, induced by large fabric-internal latency and
fast link speed, is surely a bottleneck to scalability. Without
speedup, it is still open whether CICQ switches can guarantee
100% throughput for either best-effort or real-time services.

In this paper, we propose a design approach of rate-based
smoothed switching to tackle these problems. Rate information
is more compact and hence more scalable than credit infor-
mation. It can feasibly be obtained by admission control for
real-time services, or by on-line bandwidth demand estimation
and allocation for best-effort services. With additional rate in-
formation, predictability of switch design can be enhanced. In
particular, for CICQ switches, if rate-based smoothed sched-
ulers are placed at inputs and outputs, filling and draining cross-
point buffers smoothly, then a small buffer will suffice, regard-
less of fabric-internal latency or link speed. This will break the
bottleneck of large crosspoint buffers, eliminate the credit-based
feedback flow control, and reinforce predictability.

Specifically, Section II develops the concept of smoothness
from two intuitive and complementary viewpoints: covering
smoothness and spacing smoothness, which are then unified in
the same model. Section III proposes a smoothed multiplexer
sMUX to solve the smooth multiplexing problem, with almost
ideal smoothness bounds obtained for each of the flows sharing
a link. Section IV proposes a smoothed buffered crossbar
sBUX, which uses scheduler sMUX at inputs and outputs,
and a buffer of just two cells at each crosspoint. It is proved
that sBUX can use 100% of the switch capacity to support
real-time services, with deterministic guarantees of bandwidth
and fairness, delay and jitter bounds for each flow. To support
best-effort services, Section V introduces a bandwidth regulator
to periodically deliver an admissible bandwidth matrix to sBUX
by on-line bandwidth demand estimation and allocation. The
two-cell crosspoint buffers are still sufficient to guarantee no
cell loss even during dynamic bandwidth updating. Section VI
conducts simulation to show that sBUX coupled with the band-

width regulator can deliver a throughput of almost 100% and an
average delay of multiple microseconds. In particular, neither
credit-based flow control nor speedup is needed, and arbitrary
fabric-internal latency is allowed between line cards and the
switch core. Section VII concludes the paper with discussion
of the rate-based control scheme and the smooth switching
problems for some leading switches. All proofs of theorems are
placed in the Appendix.

II. SMOOTHNESS

This section defines the concept of smoothness.
There are flows of fixed-size cells sharing a link of band-

width ; each flow is allocated a bandwidth , where
and . This specifies an instance ,
which can be reduced to its normal form ,
abbr. , in which and .

Time is slotted, with slot denoting the real interval ,
and slot interval denoting the slot set

. A schedule or scheduler for an instance
is a function , mapping slots
to symbols or cell services; symbol stands for an idle cell
service and symbol stands for a cell service to flow .

The smooth multiplexing problem (SMP) is to generate a
smooth schedule such that cell services to each flow are dis-
tributed evenly in the whole sequence. Intuitively, in an ideally
smooth schedule for an SMP instance , any
interval of consecutive slots should cover number, or
in practice, either or number of cell services to
flow . In a complementary view, successive number
of cell services to flow should be spacing slots apart,
or either or slots apart. Such different and
intuitive views of covering and spacing, along with the integral
constraint, shall be taken into account during formalization.

A. Covering

Let , abbr. , denote the number
of cell services to flow that are scheduled by scheduler in-
side slot interval . We investigate the whole spectrum of

and its worst-case deviation from an ideal distribu-
tion over all possible slot intervals .

Given a slot interval , , which could be
finite or infinite , the minimum and the
maximum covers at length within this interval can be defined
as follows:

We measure covering smoothness of the actual distribution
of cell services to flow within by the following two
worst-case covering deviations from the ideal:

By definition, , . See Table I for
illustration. Within interval , if

, or equivalently, if for any
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TABLE I
COVERING AND SPACING PROPERTIES OF � IN ���� �� � �� � � � � � � � � � � �, � � ���

interval , then the distribution of cell services
to flow is ideal from the covering point of view.

B. Spacing

Let , abbr. , denote the slot of the
th cell service to flow scheduled by scheduler , and let

, abbr. , denote an -step space, or
the number of slots between the positions of the th and th
cell services to flow .
Then given an interval , ,
either finite or infinite , the minimum
and the maximum spaces at step within this interval can be
defined as follows:

We measure spacing smoothness of the actual distribution of
cell services to flow within by the
following two worst-case spacing deviations from the ideal:

By definition, , . See Table I
for illustration. Within interval ,
if , or equivalently, if

for all and subject
to and , then the distribution of cell services
to flow is ideal from the spacing point of view.

C. Bridge Between Covering and Spacing

Before we proceed, we should first notice the different do-
mains of definition for covering and spacing. Suppose covering
properties are defined in interval , which contains
number of cell services to flow located at through

, then spacing properties can be defined only within
interval which is normally a proper
subset of . Intuitively the properties defined in the su-
perset should be able to determine the properties defined in the
subset, but not vice versa.

Theorem 2.1: In a schedule for an SMP instance, for any
flow , and any nonnegative integers , , , and ,

where the right-hand side of is defined within the interval in
which the left-hand side of is defined.

Theorem 2.2: In a schedule for an SMP instance, for any
flow ,

where the left-hand side of is defined within the interval in
which the right-hand side of is defined.

Theorem 2.2 describes the relationship between covering
smoothness and spacing smoothness, revealing their consis-
tency and correspondence. It has a corollary as follows.

Corollary 2.3: In a schedule for an SMP instance, for any
flow ,

where the right-hand side of is defined within the interval in
which the left-hand side of is defined.

Corollary 2.3 reveals the correspondence between ideal cov-
ering and ideal spacing, strengthening the rationality of smooth-
ness definitions. Given a schedule for an SMP instance, if

, then the schedule is called ideal for
flow ; if the schedule is ideal for every flow, then the schedule
is called ideal. In general, an ideal schedule might not exist, e.g.,
for the SMP instance (2/6, 3/6, 1/6). But it is easy to generate
an ideal schedule only for a single flow, or for two flows whose
normalized bandwidths add up to 1, as shown next.
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Fig. 1. The sMUX schedule for SMP instance (5/8, 2/8) with common initiation
time 0. The dashed lines are eligible times and deadlines for each cell service.

Theorem 2.4: SMP instance with
always has an ideal schedule, which can be constructed by al-
locating cell services to flow to slots for all in-
teger , and cell services to flow to the slots left, where is
an arbitrary but fixed real number.

While the concept of smoothness was defined within a peri-
odic frame as certain covering discrepancy in [36], their defini-
tion did not consider the viewpoint of spacing, let alone the rela-
tionship between covering and spacing, in a general sequence.
No formal definitions of smoothness are given in [21]. To our
best knowledge, our definitions of smoothness are most general
and comprehensive.

III. SMOOTHED MULTIPLEXER sMUX

This section designs and analyses an algorithm called
smoothed multiplexer or sMUX.

A. Algorithm sMUX

Assume an SMP instance is given. Besides
the normalized bandwidth , each flow is additionally as-
sociated with an initiation time to mark the earliest time slot
the scheduler is ready to schedule flow . This is to reflect the
dynamic scheduling of newly admitted flows in practical appli-
cations. Starting from time , the th cell ser-
vice to flow is eligible at time , and is
expected to finish before deadline . That is, the
th cell service for flow is expected to be allocated in the th

window .
If resource allocation can be in units of arbitrarily small size

rather than in units of slot, then an earliest deadline first or EDF
scheduler shall feasibly schedule the set of flows (i.e., all the
requirements of eligible time, service time and deadline shall
be met) since [41]. But solutions to SMP require that
each flow be serviced in units of an integral time slot, which
makes it impossible to meet all the requirements stated before.
Algorithm sMUX, as an EDF scheduler adapted to the integral
constraint, tries to achieve the best approximation.

Algorithm sMUX: At each time slot , among those flows
that are eligible for scheduling, i.e., their next cell services have
eligible times no later than ( , or equivalently,
), allocate slot to the flow with the earliest upper-rounded

deadline ; ties are broken arbitrarily. When no flow is el-
igible, slot is left idle.

Fig. 1 is an illustration of how sMUX works on an SMP in-
stance (5/8, 2/8) with all .

It is obvious that sMUX provides the th cell service for flow
after its eligible time . The following theorem shows that

the service finishes before .

Theorem 3.1: In a sMUX schedule for an SMP instance
with initiation times , the th

cell service to flow is allocated within the slot
interval , where , and

.

B. Guaranteed Smoothness of sMUX

Theorem 3.2 below characterizes the guaranteed smoothness
bounds of sMUX. Owing to introduction of the individual initia-
tion time , the scheduler is ready to schedule each flow at pos-
sibly different times. Hence, the covering properties concerning
flow should be calculated from slot onward.

Theorem 3.2: Given a sMUX schedule for an SMP instance
with initiation times . Then for

any flow , interval length , and step size , the sMUX schedule
has the following properties:

The covering deviation of sMUX is at most one cell service,
which could be outperformed only by an ideal schedule if it ex-
ists. In this sense the sMUX schedule is almost ideal or optimal.
When an ideal schedule does not exist, which is the normal case,
the sMUX schedule is optimal. The constant deviation also in-
dicates that compared with the spacing deviation, the covering
deviation seems to be a normalized measure of smoothness.

By eligible time control, cells of flow are admitted into
sMUX at times , , with all
spacing and covering deviations equal to zero. If sMUX only
introduces a constant delay to each cell, then spacing devia-
tions of leaving cell sequences should remain zero. Therefore,
any non-zero spacing deviations are actually the delay jitters,
resulting from variable delays introduced to cells by sMUX.

Simply speaking, sMUX combines the guarantee of circuit
multiplexing and the flexibility of packet multiplexing [18].
The frame-based circuit multiplexing guarantees dedicated
bandwidth and fixed delay (comparable with the frame dura-
tion), but suffers from a service granularity problem: a small
frame might waste bandwidth while a large frame complicates
frame scheduling and storage. In contrast, packet multiplexing
allows more flexible bandwidth sharing, but the worst-case
delay might be unpredictable. For real-time services, e.g.,
continuous media, we need flexible bandwidth allocation and
predictable worst-case delay and jitter bounds. The scheduler
sMUX allows arbitrary and almost exact sharing of the link
bandwidth; the implicit huge frame reference can be considered
to be compactly embedded in the slot-by-slot sMUX algorithm.
The worst-case delay and jitter, however, are independent of
the length of the implicit frame reference.

In terms of fast hardware implementation, the minimum of
256 24-bit numbers can be found in 4.5 ns in 0.18 m CMOS
technology [16]. For comparison, the transmission time of a
64-byte cell in a 40-Gb/s (OC-768) link is 12.8 ns. This strongly
suggests that sMUX can feasibly be used in switches with high
link speed ( 40 Gb/s) and high port density ( 256).
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Fig. 2. Architecture of a 3 � 3 buffered crossbar switch sBUX.

IV. SMOOTHED BUFFERED CROSSBAR sBUX

This section describes a CICQ switch called smoothed
buffered crossbar or , which uses sMUX as both input
and output schedulers. It will be shown that a two-cell cross-
point buffer (XPB) suffices to guarantee no cell loss even
without credit-based flow control.

A. Switch Model

Consider an CICQ switch with unit-speed input and
output links. For each input-output pair , the switch has
a virtual output queue at input, and a first-in-first-out
crosspoint buffer inside the crossbar. There is a sched-
uler for each input , and there is a scheduler for each
output ; they are all sMUX schedulers. The fabric-internal la-
tency can be arbitrary between line cards and the switch core.
See Fig. 2.

Data crossing the switch are organized into flows of fixed-size
cells. In this paper we consider unicast flows. Cells of flow
originally arrive at input , temporarily queue at and
then at , and finally go to output . Associated with flow

is a bandwidth , and bandwidth matrix
is feasible or admissible, i.e., for all and
for all . For bandwidth-guaranteed real-time services, such a
matrix should be available by admission control. For best-effort
services, such a matrix is obtained periodically by an on-line
bandwidth regulator, to be described in Section V.

Time is slotted with each time slot being the time to transmit
one cell at link speed. At each time slot, each input scheduler

will select one VOQ at input , say , based on the
parameters in row of matrix , and transmit the head cell to
the corresponding crosspoint buffer . At the same time
slot, each out scheduler will select one crosspoint buffer,
say , based on the parameters in column of matrix ,
and transmit the head cell to the corresponding output . The

sMUX schedulers make their decisions independently and
in parallel, and then the switch executes their decisions synchro-
nously.

What is unique to switch sBUX is that no credit-based flow
control is used for each XPB. Specifically, at each time slot, ac-
cording to sMUX, each input scheduler will provide a cell ser-
vice to one VOQ, no matter whether this VOQ is backlogged or
the corresponding XPB has any vacancy; each output scheduler
will provide a cell service to one XPB, no matter whether this

XPB is backlogged. Hence, input schedulers and output sched-
ulers are further decoupled.

While the overhead of credit-based flow control is eliminated,
the small crosspoint buffers are in danger of overflow. However,
the occupancy of each XPB is always upper-bounded by two
cells, as shown next.

B. XPB Occupancy Analysis

Let us take as our point of view.
In practice, it is reasonable to place at the switch core

and at the th line card, with a latency in between. By
available hardware technology, this latency can be measured
precisely and compensated accordingly such that when
starts to schedule out of at initiation time ,
has already started to schedule out of at an ear-
lier initiation time . This is functionally equivalent to
placing and at where is located, with no
latency in between, and starting to schedule into at
the delayed initiation time , or at the same
time that starts to schedule out of . Therefore,
from now on, we will assume that both and , together
with , are placed at where is located, with no
latency in between. They start scheduling into and out of

with the same rate , at the same initiation time .
Assume that has an infinite capacity and is empty

initially (i.e., empty before ). We are interested in the max-
imum occupancy of under the operations of and

, which will be the minimum capacity of to guar-
antee no cell loss. Because the input scheduling and the output
scheduling are completely decoupled in a sBUX switch, a key
observation is: the critical situation to produce maximum occu-
pancy of is when is always backlogged.

Since both input and output scheduling are rate-based, regard-
less of cell availability, input and output operations may be inef-
fective when there is no cell available in VOQ or XPB. Specifi-
cally, in time interval , number of
input operations on consist of
number of effective ones and number
of ineffective ones. Similarly, number of
output operations on consist of
number of effective ones and number
of ineffective ones. Under the critical situation, all input oper-
ations are apparently effective, but what happens with output
operations and crosspoint buffers?

Theorem 4.1: Under the critical situation, at most one
output operation is ineffective:

Theorem 4.2: Let denote the maximum occu-
pancy of , then is upper-bounded by two
cells:

Theorem 4.2 assumes a fixed bandwidth. What happens if the
bandwidth is updated dynamically?

Theorem 4.3: Assume that once every slots, the admissible
bandwidth matrix is updated with possibly new parameters. As-
sume that each bandwidth is represented by ,
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where is an integer. Then is still bounded by two
cells:

Note that this two-cell XPB suffices for arbitrary fabric-in-
ternal latency and arbitrary link speed. In contrast, the size of
each crosspoint buffer is 64 cells in [1] or 2 KB in [20] for their
respective products of fabric-internal round-trip time and flow
or line rate.

C. Guaranteed Performances

The sBUX switch, including the input schedulers, the output
schedulers and the crosspoint buffers, is almost equivalent to
an OQ switch operated by sMUX, because each sMUX output
scheduler of sBUX conducts at most one ineffective service op-
eration when all VOQs are backlogged at inputs (Theorem 4.1),
which is negligible for all practical purposes.

If taking this ineffective operation into account, sBUX pro-
vides the following worst-case performance guarantees.

Theorem 4.4: In a sBUX switch, flow or the channel from
input to output is guaranteed a service with the following
smoothness bounds:

Theorem 4.5: In a sBUX switch, once a cell of flow goes
to the head of , it will wait at most slots before
it leaves the crosspoint buffer (excluding the constant
fabric-internal propagation latency common to all cells).

Simulation shows that all the bounds of Theorems 4.1–4.5 are
tight in the sense that they are achievable at certain instances.
For example, observe the instance where , ,

, , row vector , and
column vector . Starting from ,
the second output operation on at slot 7 is ineffective,
and occupancy reaches 2 at the end of slot 12. In
the cell sequence out of output , the first cell coming from
input occurs at slot 1, the second at slot 13. This produces an
interval of length 11 with no cell service to input covered, or
a covering deviation of 2 cell services. This also produces a
1-step space of 12 slots, or a spacing deviation of 7 slots, more
than but less than slots. After the
first cell of flow is scheduled into at slot 1, the
second cell becomes the head of and waits 12 slots
before it departs from ; the waiting time is more than

but less than .
In general, given an admissible bandwidth matrix, if the

switch, possibly with constant speedup support, can guarantee
constant smoothness bounds and for
each flow from input to output , then we define that this
switch achieves smooth switching. Actually, such constant
smoothness bounds imply that the switch can use 100% of the
switch capacity to provide deterministic rate guarantees for
each flow with constant fairness and jitter bounds, or perfect
predictability. By definition, sBUX achieves smooth switching.

D. Summary

When supporting real-time services, the CICQ switch sBUX
best achieves the two goals of scalability and predictability.

sBUX requires the same memory bandwidth as an IQ switch
without speedup, which is the lowest possible. Its computation is
based on rate rather than per-slot information, and is conducted
in a fully distributed manner; this minimizes communication
overhead. The key operation of its computation, namely the
minimum selection among multiple numbers, is amenable to
fast hardware implementation, and seems indispensable to any
scheduler with guaranteed performance under non-uniform
traffic. It eliminates credit-based feedback flow control for the
crosspoint buffer, decreases the crosspoint buffer size to the
minimal, eliminates output buffer since no speedup is needed;
all these greatly simplify the implementation. Its guaranteed
smoothness bounds under any admissible bandwidth matrix are
small constants, implying almost the best achievable qualities of
service including throughput, bandwidth and fairness, delay and
jitter guarantees. Inparticular, these guarantees are deterministic,
worst-case, and finite-scaled guarantees, rather than stochastic,
average-case, and asymptotic ones. To our best knowledge, no
other CICQ or CIOQ (combined input- and output-queued)
switches have been proved to hold such comprehensive quality
of service guarantees. In short, sBUX is a transparent switch.

V. BANDWIDTH REGULATOR

sBUX is ready to support bandwidth-guaranteed services
since an admissible bandwidth matrix is already available
through admission control. When sBUX is to support best-ef-
fort services, such an admissible bandwidth matrix is not
available, and has to be obtained dynamically via a bandwidth
regulator, whose design is described in this section.

A. Architecture

Fig. 3 is the architecture of the bandwidth regulator, which is
composedofdistributedbandwidthdemandestimatorsandacen-
tralizedbandwidthallocator.Periodically,bandwidthdemandes-
timators collect information about traffic arrivals and VOQ back-
logs at each input port, and produce an on-line estimation of the
bandwidth demand matrix. The bandwidth allocator receives the
possibly inadmissible bandwidth demand matrix, transforms it
into an admissible and fully loaded one, and then feeds it to the
smoothed switch sBUX for scheduling in the next period.

B. Bandwidth Demand Estimator

Two sources of information can be used to design a band-
width demand estimator: traffic arrival and VOQ backlog. To
compensate for the one period lag due to bandwidth allocation
computing, bandwidth demand estimation at the beginning of a
period is to estimate the demand in the next period instead of
the current immediate one.

Traffic arrival prediction receives much attention by previous
research, which uses the common technique of exponentially
weighted moving average filter to predict the future arrival based
on the information of past (factual) arrival and current (pre-
dicted) one [4], [5]. Specifically, at the beginning of the th pe-
riod, we are to predict the arrival rate of flow in
the th period, based on the factual arrival rate
in the th period and the predicted arrival rate in
the th period:

where is the gain or forgetting factor, .
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Fig. 3. Architecture of the bandwidth regulator.

The VOQ backlog information reflects both the actual arrival
and the actual allocation information; it is the deficit of alloca-
tion compared with arrival accumulated in the past. This infor-
mation is actually more important since, based solely on it, a
maximum weight matching scheduler longest queue first guar-
antees 100% throughput for a crossbar switch [12], [28]. Specif-
ically, at the beginning of the th period, we are to predict the
backlog of flow at the beginning of the th
period. While previous research uses , we
propose a more accurate design of estimator by taking
into account the current factual backlog , plus the arrival
rate and the allocated rate for the current period:

where is the time of period.
The final bandwidth demand estimator we use is the

sum of the arrival and the backlog estimators:

It is worth noting that certain demand estimators do not fully
take backlog information into account, which simplify the fol-
lowing bandwidth allocation but probably at the cost of dynamic
response [4], [5].

C. Bandwidth Allocator

The design of bandwidth allocator should take complexity,
throughput and fairness into account. Previous research con-
siders the maximum flow model best for this purpose, with
bandwidth demand and line rate as capacity constraints [4],
[5]. However, if the period degenerates into one slot, i.e.,

, then the maximum flow degenerates into a maximum
size matching, which does not guarantee 100% throughput.
Besides, the maximum flow computation is of high complexity.
Therefore, this maximum flow model is neither sound in prin-
ciple nor feasible in practice.

Another choice is the max-min fair allocator [17]. It is an ex-
tension of the classical one-dimensional max-min fair allocator
to the two-dimensional matrix, and guarantees that the min-
imum allocation to an element is the maximum among all ad-

Fig. 4. Illustration of bandwidth allocation. The first is the bandwidth demand
matrix. The second is the bandwidth allocation matrix after proportional scaling.
The third to fifth are the results of three steps of the bandwidth booster.

missible allocations. But its computing complexity is also high,
and it is more fairness-oriented than throughput-oriented.

Instead, we use the proportional scaler, the simplest among
the three. It is amenable to fast hardware implementation and
provides proportional fairness. Specifically, suppose flow
demands bandwidth , with total demand at
row or input , and total demand at column
or output . Then the proportional scaler makes an allo-
cation . Such an allocation
is admissible, because , and

.
Under rate-based switch scheduling with periodic rate up-

dating, an admissible yet not fully loaded bandwidth allocation
matrix will waste the excess capacity of the sBUX switch. The
proportional scaler has a unique merit that is not available with
the maximum flow and the max-min fair allocators. That is, it-
erated proportional scaling can boost bandwidth allocation pro-
portionally while keeping admissibility, and guarantee to con-
verge, possibly to a doubly stochastic or fully loaded matrix
if each element is originally positive. However, within a fixed
number of iterations, proportional allocation cannot converge
to a doubly stochastic matrix; there is still excess bandwidth to
be used. Therefore, after applying proportional scaler just once,
we use a bandwidth booster to obtain a doubly stochastic allo-
cation matrix.

The bandwidth booster is an extension of the Inukai algorithm
for the same purpose. The Inukai algorithm starts from position
(1, 1), boosts the element to saturate at least one of the associ-
ated two lines, then makes a down or right move and repeats
boosting, until a doubly stochastic matrix is obtained within

steps [15]. This algorithm is unfair since elements
appearing earlier in the path get more chances of boosting; be-
sides, the algorithm is sequential. We propose a parallel and fair
booster. Specifically, partition the matrix into diagonals, each
one corresponding to a perfect match; boost in parallel the
elements in each diagonal to saturation, which is fair to rows
and columns; finish diagonals in steps. To further improve
fairness, in each period, we select a new starting diagonal in the
round-robin manner.

Fig. 4 is an illustration of how to transform a bandwidth de-
mand matrix into a doubly stochastic one by the proportional
scaler and the bandwidth booster. The matrices have been trans-
formed into integral ones, with period as the target
line sum. The proportional scaler works as

. The bandwidth booster works as
. Such integral representation and

operation are amenable to hardware implementation.

D. Hardware Implementation

The implementation efficiency of the bandwidth regulator de-
termines the minimum period that is affordable in dynamic
bandwidth updating.
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TABLE II
TIME TO IMPLEMENT THE BANDWIDTH REGULATOR

The bandwidth demand estimators are distributed in line
cards, and their implementation is trivial. Each line card will
transmit bandwidth demands to the bandwidth allocator
in the switch core, and then receive bandwidth allocations
from the allocator. All line cards work in parallel. Assume
each bandwidth demand or allocation is encoded as an -bit
integer, and is transmitted between line cards and the switch
core through high-speed serial links at speed , then the total
time of transmission is .

The proportional scaling is done by
. The two line sums and can be

computed along with the receiving of bandwidth demands in
a pipelined manner, and hence no additional time cost. Each
comparison operation takes time . The multiplication by

takes no time since can be set as a power of two. Each
division operation takes time . Therefore, the proportional
scaling of elements needs time . Since all
these operations are independent, they can be done in par-
allel with parallel components, which reduces the time to

.
With a proportional bandwidth allocation in hand, before

boosting, we should first compute the line sums and
. Each element is involved in two additions, and ele-

ments in each of the diagonals can be computed in parallel.
This incurs time , where is the time of
addition operation.

Then the bandwidth boosting
is done in steps. At each step, ele-

ments in a diagonal are boosted in parallel. Each boosting
operation adds to , , and , and
involves one comparison and four addition operations. The
steps need time .

To sum up, the total time for the bandwidth regulation is
. With

available hardware technology, , ,
, , . We conduct em-

ulation with FPGA chip EP2S180F1508C3 (Altera Stratix II).
Since each bandwidth demand is coded in , for

, the line sum can be coded in 26 bits. By 20-stage
pipelining, a 26-bit divider can be implemented in 10 ns. And
100 dividers consume only 61% of the chip resource. Table II
presents the time estimation for different switch size , in units
of s and slot of 64-byte cell at 10 Gb/s (OC-192) and 40 Gb/s
(OC-768) link speed. Even for , 16-bit encoding is
enough to represent the number of cells arrived in a period of
bandwidth regulation. For , rate information can be ex-
tracted within several microseconds.

Fig. 5. The durations of 932 phases in 1 000 000 slots, each generated randomly
in [100, 2000].

VI. SIMULATION

In this section, we evaluate the performance of sBUX plus
bandwidth regulator under best-effort traffic.

A. Simulation Design

There are three key components for the simulation design:
switch settings, traffic patterns, and performance measures.

The switch is the integration of the bandwidth regulator and
the smoothed buffered crossbar sBUX, with switch size 8,
16, 32, 64, and bandwidth regulation period 32, 64, 128,
256, 512, 1024, 2048, 4096.

At inputs, random linear combinations of three key traffic pat-
terns with random durations are generated to reflect the dynamic
nature of arriving traffic. This is called the synthetic pattern,
more difficult to deal with than its individual component. The
three component traffic patterns are the uniform (U), log-diag-
onal (LD), and unbalanced (UB) [38]; the last one is used at un-
balanced factor as that is harsh to most switches. The
simulation lasts 1 000 000 slots and contains 932 phases whose
durations are generated randomly within [100, 2000] (Fig. 5). In
each phase, three random coefficients , and

are generated, and is syn-
thesized as the traffic pattern for this phase. Traffic load varies
from 0.1 to 1.0 with an increment of 0.1 when
and an increment of 0.05 when . We also use a
bursty traffic pattern, i.e., an on-off arrival process modulated
by a two-state Markov chain to test the effect of burstiness on
sBUX [27].

At outputs, throughput, average delay and burstiness are mea-
sured over the whole simulation duration of 1 000 000 slots.
Throughput is the ratio of the number of cells that appear at out-
puts to the number of cells that arrive at inputs, when each input
is fully loaded . Average delay is measured over all
cells that appear at outputs and under all loads .
Average burstiness is measured over all the segments at outputs,
with each segment being a maximal subsequence of consecutive
cells from the same input.

B. Simulation Results

Simulation results are presented in three parts.
The first part studies the bandwidth demand estimator design.

Besides selecting , we also test the bandwidth demand esti-
mator that is based solely on backlog, just for comparison. Sim-
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Fig. 6. Average delay under synthetic traffic at � � ��, � � ���.

TABLE III
THROUGHPUT UNDER SYNTHETIC TRAFFIC

Fig. 7. Average delay under synthetic traffic at � � ��.

ulation is done under synthetic traffic at , ,
with varied in [0.1, 1.0] at an increment of 0.1. All through-
puts are 0.997, no difference at all; but average delays differ,
as Fig. 6 shows. Specifically, by addition of arrival prediction,
average delay can be reduced by at least 35% at medium load

. The choice of , however, seems insignificant. Sim-
ulations with other settings of and produce similar results.
To keep balance between past and present, we select
in subsequent simulations. This choice simplifies hardware im-
plementation of the arrival predictor.

The second part studies the effects of period and switch
size . All combinations of switch size 8, 16, 32, 64, and
period 32, 64, 128, 256, 512, 1024, 2048, 4096 are tested.
Table III shows the throughputs, all of which are almost 100%,
with marginal difference between each other.

Fig. 7 shows the average delay under synthetic traffic at varied
periods yet unvaried switch size . When in-
creases, the average delay increases slowly. The tendency is the
same with other . With , , 64-byte cell and
40-Gb/s link speed, the average delay is 470 slots or 6 s at

.
Fig. 8 shows the average delay under synthetic traffic at varied

switch size yet unvaried period . When in-

Fig. 8. Average delay under synthetic traffic at � � ���.

TABLE IV
PERFORMANCES UNDER BURSTY TRAFFIC (� � ��, � � ���)

creases, the average delay increases slowly. The tendency is the
same with other .

The third part studies the performance under bursty traffic.
As Table IV shows, when input burst length increases, average
delay also increases, but output burst length remains 1 for any
loading, light or heavy, meaning perfect burstiness reduction by
sBUX. The throughput remains over 99%.

VII. CONCLUSION

Rate-based smoothed switching is the design approach we
propose in this paper, which decomposes a switch design into
a generic bandwidth regulator and a specific smoothed switch,
with an aim to achieve greater scalability and predictability.

Rate-based control is in sharp contrast to the predominant
approach of credit-based control. The latter uses instantaneous
buffer occupancy information at each time slot to compute the
schedule and prevent buffer overflow. However, this per-slot
computing and communication mode is difficult to scale with
faster link speed and larger switch size. The scalability consid-
eration urges us to use more compact information and coarse-
grained or batch mode of processing. Rate information is com-
pact in nature as it is applicable for a period of time slots, and
can be extracted feasibly in microseconds by our bandwidth
regulator. The rate-based smoothed buffered crossbar sBUX re-
moves the credit-based flow control, augments the distributed
feature of input and output scheduling, reduces the capacity of
each crosspoint buffer to a minimal constant of two cells, and
eliminates the need of speedup. All these greatly simplify the
implementation and enhance the scalability.

Rate-based smoothed switching is also highly predicable.
With just a two-cell buffer at each crosspoint and no speedup,
sBUX guarantees 100% throughput for real-time services. In
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particular, the almost ideal smoothness guarantees imply that
rate guarantees are very accurate even in the worst case and in
any time window, short or long, finite or infinite. In some sense,
the switch is so predictable that it can be considered transparent.
Simulation shows that coupled with bandwidth regulator, the
switch guarantees almost 100% throughput and perfect bursti-
ness reduction for best-effort services, with average delays of
at most tens of microseconds even under heavy load
and reasonably large switch size It is worth noting
that the approach of rate-based smoothed switching can support
best-effort and real-time services gracefully in the same model,
an obvious yet important feature we do not elaborate in the
paper.

One of the key problems left is to design a bandwidth reg-
ulator with guaranteed 100% throughput and with improved
average delay and implementation efficiency. We conjecture
that based on just queueing backlog information, the propor-
tional allocator, after sufficient iterations, can guarantee 100%
throughput for best-effort services.

The smooth switching problem offers a critical perspective
for switch design and analysis, and remains open for most
switches, even for the classical single-stage crossbar switch
despite the feasible perfect emulations of certain push-in,
first-output OQ switches [10], [11]. We conjecture that a
crossbar switch can achieve smooth switching with a speedup
of no more than two. Considering that even rate guarantees are
difficult to obtain for most switches, the smoothness guarantee
may be a luxury. But smoothness does play an indispensable
role in bounding the buffer usage in the switches, as demon-
strated by sBUX.

The further scalability of buffered crossbar switches might
suffer from the crosspoints. When the switch size scales to
hundreds or even thousands, the three-stage buffered crossbar
switches are preferable; a recent example is a 1024 1024
three-stage switch, with thirty-two 32 32 buffered crossbar
chips at each stage [9]. There is a solution for rate-based three-
stage bufferless crossbar switches [5], but we hope that with
sBUX as switching element, the rate-based three-stage buffered
switch fabrics can be made simpler in implementation and more
predictable in performance.

APPENDIX

A. Proof of Theorem 2.1

The theorem is correct when the interval for definition con-
tains exactly one cell service to flow . Let us consider the gen-
eral cases where the interval for definition contains at least two
cell services to flow . The proof is by contradiction.

(1) Assume that , but . Then
, such that

. Hence, , ,
such that . Therefore

, contradictory with the as-
sumption .

(2) Assume that , but . Then
, such that . Assume that

is defined within , then
. Since is also defined within , hence

.

If , since , it is implied
that . Hence,

, contradiction. It is the same with
.

If , we can locate the
cell service to flow immediately before slot at

and locate the cell service to flow immediately
after slot at . Since

, then , and
, contradiction.

(3) Assume that , but . Then ,
such that . The interval

contains number of
cell services to flow , but has a length of at most

. Then
, contradictory with the assumption .

(4) Assume that , but . Then ,
such that . Within interval

, there are at least number of cell services
to flow , which decide an -step space of at most ,
contradictory with the assumption .

B. Proof of Theorem 2.2

The theorem is correct when the interval for definition con-
tains exactly one cell service to flow . Let us consider the gen-
eral cases where the interval for definition contains at least two
cell services to flow . We will use two general properties con-
cerning any integer and real number :

Property 1: .
Property 2: .

(1) (2) Assume that and are de-
fined within interval , which covers totally

number of cell services to flow
, with the first at slot and the last at slot

; and are defined within
.

Define
, i.e., is defined within

the interval for definition of spacing properties and
. Since the domain of definition of is a subset

of that of , . In the same way we define
, and .

(1) For any step size , , let , then
(since , by Theorem 2.1,

, hence . If ,
by Theorem 2.1, , contradiction).

by Property

By Property 2,

Hence, .
(2) For any step size , , let , then

(since , by Theorem 2.1,
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, hence ; if
, by Theorem 2.1, , contradiction).

by Property

By Property 2,

Hence, .
(3) (4) Assume that and are defined

within interval , , which
has a length of . The and

are defined within the same interval.
(3) For any interval length , , let .
If , then , and

(if , then by Theorem 2.1, ,
contradiction).

by Property

By Property 2, .
If and are finite, we have to deal with two special cases.

Note that , ,
.

If ,

by Property

By Property 2,

If ,

Therefore, .
(4) For any interval length , , let ,

then (if , then by Theorem
2.1, , contradiction).

by Property

By Property 2, .
Therefore, .

C. Proof of Theorem 2.4

First we prove the distribution of cell services to flow
is ideal over arbitrary intervals. Consider arbitrary interval

,

Since and are arbitrary, is
valid for any interval.

Next, we prove the distribution of cell services to flow in
the schedule is also ideal. For any slot and interval length ,
since the distribution of cell services to flow is ideal,

Since , , we
have

That is, .
Therefore, the distributions of cell services to flow and

in the schedule are both ideal, so the schedule is ideal.

D. Proof of Theorem 3.1

Lemma 3.1 (Spuri): [41] Given a set of real-time jobs
, where job requires a service time of

after its eligible time but before its deadline . Given an
interval of time , define the processor demand of the job
set on interval as subject to
and . Then any job set is feasibly scheduled by EDF
on uni-processor if and only if its processor demand

on any interval .
The th cell service to flow can be modeled as a real-time

job , where ,
, and . Scheduler sMUX is to schedule

the job set by EDF on uniprocessor.
Given an integral interval , assume that number of

cell services to flow , say, from the th cell service to the
th, are completely contained inside the interval .

That is,

By ,

The processor demand of job set on is

That is, . Since both sides of are
integers, .

Given an arbitrary interval , then
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Therefore, by Lemma 3.1, the job set is feasibly scheduled by
sMUX.

E. Proof of Theorem 3.2

(1) By Theorem 3.1,

That is, the th cell service to flow is covered by
interval , therefore .

This means the position of the th
cell service to flow is beyond interval . Therefore,

(2) For any ,

Therefore,

(3) Since , with an ideal schedule
as reference, we obtain

In the same way, we can prove .
(4) By Theorem 3.1, in the sMUX schedule , the th

and the th cell services to flow satisfy

Therefore,
, and

.
(5) Since , with an ideal schedule

as reference, we have

In the same way we can prove .

F. Proof of Theorem 4.1

Under the critical situation, all input operations are effective.
By case (1) of Theorem 3.2,

Therefore,

As a result, .

G. Proof of Theorem 4.2

To obtain , it suffices to merely check the critical
situation, under which all input operations are effective, and at
most one output operation is ineffective (Theorem 4.1).

By Theorem 3.2, case (1), and Theorem 4.1,

H. Proof of Theorem 4.3

Proof: The key to the proof is the fact that during each pe-
riod of slots, sMUX will conduct exactly number of
input operations and just the same number of output operations.
Again, to deduce the maximum occupancy of crosspoint buffer

, just consider the critical situation, in which all input
operations are effective.
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During the first period of slots, Theorem 4.2 has proved

In particular, the same number of input operations and output
operations are conducted, and at most one output operation is
ineffective (Theorem 4.1). Therefore, at the end of the first pe-
riod, has at most one cell stored in it.

Now consider the second period. At the beginning, if there is
no cell in , then the conclusion is just the same as the
first period.

If there is one cell stored in at the beginning, then
there will be no ineffective output operation, because from the
beginning of the period, the number of output operations ex-
ceeds the number of input operations by at most 1 (by case (1)
of Theorem 3.2, . Symmetri-
cally, from the beginning of the period, the number of (effective)
input operations exceeds the number of (effective) output oper-
ations by at most 1 (by the same reason as above). Taking the
initial one cell into account, at any time during the second pe-
riod, there are at most two cells in , or .
Since the number of (effective) input operations and the number
of (effective) output operations are equal, there will be one cell
left in at the end of the second period.

The conclusion is the same with all the other periods.

I. Proof of Theorem 4.4

(1) Assume that is always backlogged. Let us derive
the bounds to , the number of effective
output operations in interval , , with the switch
core as our point of view.

For the upper bound, by Theorem 3.2,

For the lower bound, by Theorems 3.2 and 4.1,

(2) The spacing smoothness bounds can be derived directly
by Theorem 2.2.

J. Proof of Theorem 4.5

Just consider the critical situation, which produces the largest
delay for the cell at the head of VOQ. Let denote
the position of the th cell of flow in the output
sequence. Consider the interval . By
case (1) of Theorem 3.2, this interval covers output operations
of at least . Since at most one
ineffective output operation, this interval will cover at least
effective output operations. Therefore,

We already know that the th cell enters no
earlier than its eligible time , thus the th
cell becomes the head of no earlier than

. Therefore, from the th cell becoming the head
of to its total departure from , the delay is no
more than
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