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Abstract 

There has been tremendous progress in top-down proteomics (TDP) in the past five years, 

particularly in intact protein separation and high resolution mass spectrometry. However, 

bioinformatics to deal with large-scale mass spectra has lagged behind, in both algorithmic research 

and software development. In this study, we developed pTop 1.0, a novel software tool to 

significantly improve the accuracy and efficiency of mass spectral data analysis in TDP. The precursor 

mass offers crucial clues to infer the potential post-translational modifications co-occurring on the 

protein, the reliability of which relies heavily on its mass accuracy. Concentrating on detecting the 

precursors more accurately, a machine-learning model incorporating a variety of spectral features 

was trained online in pTop via a support vector machine (SVM). pTop employs the sequence tags 

extracted from the MS/MS spectra and a dynamic programming algorithm to accelerate the search 

speed, especially for those spectra with multiple post-translational modifications. We tested pTop on 

three publicly available data sets and compared it with ProSight and MS-Align+ in terms of its recall, 

precision, and running time, etc. The results showed that pTop can, in general, outperform ProSight 

and MS-Align+. pTop recalled 22% more correct precursors although it exported 30% fewer 

precursors than Xtract (in ProSight) from a human histone data set. The running speed of pTop was 

about one to two orders of magnitude faster than that of MS-Align+. This algorithmic advancement 

in pTop, including both accuracy and speed, will inspire the development of other similar software to 

analyze the mass spectra from the entire proteins. 

 

Key words: Top-down proteomics, tandem mass spectrometry, bioinformatics, search engine, intact 

protein identification 
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Top-down proteomics (TDP), focusing primarily on large-scale intact proteins, has been gaining in 

popularity over the past five years. TDP encompasses front-end fractionation, mass spectrometry, 

and back-end bioinformatics
1-4

. During the pioneering days, only the purified protein or very simple 

samples could be resolved
2
. To date, however, more than 1,000 proteins in complex samples can be 

identified in just a single study. Indeed, top-down protein analysis has been achieved on the 

proteomic level
1,5-7

. Under today’s technology-driven circumstances, a great variety of publications 

employ TDP, either in fundamental biological research
8,9

 or in clinical and translational 

applications
10,11

. For instance, Ge’s lab recently discovered three crucial cardiac proteins in 

acutely-infarcted swine myocardium and then comprehensively sequenced these proteins and 

pinpointed their phosphorylation sites by top-down mass spectrometry
12

.The great demand for TDP 

in biomedical applications has pushed TDP toward investigating more complex proteins. 

Protein complexity lies not only in the protein itself, but also in its upstream gene and transcript. A 

new term, “proteoform,” frequently used in TDP, is defined as “all of the different molecular forms in 

which the protein product of a single gene can be found, including changes due to genetic variations, 

alternatively spliced RNA transcripts and post translational modifications”
13

. TDP is becoming a 

powerful tool for identifying the large-scale proteoforms, while the widely available bottom-up 

proteomics (BUP) concentrates on digested peptide mixtures
14

. The protein inference problem
15-17

 in 

BUP can cause ambiguities when determining which proteins actually exist in the sample from the 

peptide pool. Such ambiguities may also be carried forward into protein quantification. Nevertheless, 

TDP bypasses the digestion process and protein inference in BUP. It aims to identify and characterize 

the proteins from a “bird’s eye” view—i.e., all proteoforms globally. 

So far, TDP has evolved from a promising technique adopted in only a few research labs to a 

practical tool applied in a great many biological investigations. This can be attributed mainly to the 

remarkable advancements made in both fractionation and mass spectrometry. An effective 

separation procedure is crucial to achieve large-scale intact protein identification. In 2011, Kelleher’s 

lab developed a new four-dimensional, liquid-phase separation system, which increased the 

separation power 20-fold over any previous work. Based on this system, 1,043 gene products from 

human cells were then identified, each with about three proteoforms discovered, on average
1
. To 

date, the largest top-down study was reported to have identified 1,220 proteins from a human cell 

line H1299, which carried out multiple separation strategies, also from Kelleher’s lab
5
. It was even 

regarded as a milestone in TDP that the barrier of the 1,000-protein scale had been broken—implying 

that even larger-scale identification would not be far behind
7
. In addition to separation, intact protein 

identification depends heavily on mass spectrometry (MS), particularly the high-performance MS, 

such as high-resolution, high-accuracy Fourier Transform (FT) based instruments. In recent years, 

both the resolution and the speed have been improved dramatically, leading to higher-quality MS 

and MS/MS data than those produced from the preceding versions. There are also different, but 

complementary, fragmentation methods available to sequence the whole proteins, such as HCD
18

, 

ETD
19

, ECD
20

, the new, promising UVPD
21

, etc. All of this technical progress has laid the foundation for 

proteoform characterizations. 
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The large-scale and complicated protein MS data pose a highly computational challenge to 

downstream bioinformatics, which has played an increasingly crucial role in TDP. Unlike BUP, with 

more than a dozen software tools worldwide, only a few are currently available to deal directly with 

top-down data. Among them are ProSight
22-26

, the first top-down software, and MS-Align+ 
27

, another 

popular alternative. Algorithmic study and software development lag far behind when compared 

with the dedications to separation and MS. A virtual issue collected the TDP research papers that 

were published in the Journal of Proteome Research and Analytical Chemistry before June 2013. 

There were 29 papers on separation and 28 papers on MS, but only six were primary research papers 

on information for protein identification
28

. In most cases, the manual interpretation was inevitable 

due to the insufficient tools available or the unreliable output from the software used. 

Compared with the peptide spectra, the spectra of intact proteins are much more complicated in 

terms of the isotopic profile, charge state, fragment number, and so on. Although it seems daunting 

to confront such complex spectra to be processed, such spectra abound with valuable information to 

be discovered. For instance, there are more isotopic peaks as the protein molecular weight becomes 

larger. Both the charge state and accurate mass can be inferred from its corresponding isotopic 

profiles if the resolution is high enough to resolve them. Thus, it is important to effectively utilize this 

sort of information when designing a novel software tool. Moreover, from the viewpoint of 

computational efficiency, owing to the huge search space when considering the combinatorial 

post-translational modification (PTM) patterns on the protein of interest, the analysis of large-scale 

and complicated mass spectra still remains low-efficiency. Current software has much room to 

improve, not only because TDP itself needs a much larger search space than that of BUP, but also 

because mass spectra of intact proteins require more preprocessing computation. Thus, how to 

improve preprocessing and searching efficiencies is another factor to be considered. We should 

balance the tradeoff between sensitivity and running time. Spectra preprocessing could reduce the 

complexity and improve the sensitivity of precursor detection. Enlarged search space could also 

increase the number of identified spectra but this requires the high-level algorithms to achieve the 

high-efficiency, especially when searching the proteins harboring multiple PTMs, such as the 

histones.  

Generally, the first step to process top-down MS data is to convert each isotopic cluster to its 

equivalent monoisotopic mass with its absolute or relative intensity, i.e., spectral deconvolution. In 

2000, Horn et al. proposed an algorithm, THRASH
29

, to handle the deconvolution of the high 

resolution mass spectra of intact proteins. THRASH uses a subtractive peak-finding method to 

iteratively pick the isotopic clusters and converts them to the corresponding monoisotopic masses. 

The formula to calculate the signal-to-noise ratio is now adopted in many systems. As the first 

algorithm to process the mass spectra of intact proteins, it has been extended in Decon2LS
30

, 

DeconMSn
31

, Xtract
25

 and MASH Suite
32

. However, its processing speed did not keep a pace with 

mass spectrometry since the speed of mass spectra acquisition has been improved significantly in 

last decade. In 2010, Liu et al. released another preprocessing software, MS-Deconv
33

, which put 

forward a combinatorial algorithm for spectral deconvolution in order to select a highest-scoring 
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subset of isotopic clusters rather than iteratively selecting the highest-scoring isotopic clusters using 

a greedy algorithm. However, it does not support the export of all the precursors if they are 

co-eluted. 

After such spectral preprocessing, the second step is usually to identify the proteins using the 

database search strategy. Since the sequence of an intact protein is, on average, much longer than 

that of a peptide and the potential modifications may be much more complex than those on a 

peptide, enumerating each possible variable modification may cause a combinatorial explosion. For 

example, if all possible modifications on human histone H3.1 protein in the annotated database are 

listed, the number of possible proteoforms will reach 40 trillion in theory
17

. As the first search engine 

designed for identification of intact proteins, ProSight
22-25

 adopts an offline database 

strategy—’shotgun annotation’—to generate a virtual database including known proteins, splice 

variants and modifications, and then it searches the virtual database online. ProSight was the only 

software available to identify proteoforms from tandem mass spectra of intact proteins until 2008 
34

. 

But it has one shortcoming that there are a large number of proteoforms in the virtual database that 

will not be actually matched. The size of the virtual database will become huge for complex species. 

It is essentially difficult to scale, as Pevzner pointed out
35

. MS-Align+
27

, another popular tool in TDP, 

was developed based on a spectral alignment algorithm from MS-TopDown
36

. Since the mass 

deviation during the alignment between the mass lists of a spectrum and a protein can be arbitrary, 

MS-Align+ can search the unexpected modifications using a dynamic programming algorithm. 

However, as the number of potential modifications increases, the time and space required are still 

very large. MS-Align+ has introduced several tricks to accelerate identification
27,37

. In addition to 

these two popular search algorithms, there are a few other algorithms for TDP, such as PIITA
38

 and 

ProteinGoggle
39

. 

In this work, we developed a novel software tool, pTop 1.0, to address current low-efficiency 

computational issue in TDP. In pParseTD, a preprocessing module in pTop, to detect the precursors 

more accurately, a model with multiple characteristics of the precursor ions was incorporated by 

online training in a machine-learning approach. pParseTD could not only recall more accurate 

precursors, but also support the export of the multiple precursors in the co-eluted spectrum. In the 

database search procedure, we adopted a sequence-tag based protein identification strategy which 

was similar as that in ProSight. The difference was that we introduced the indexes of both sequence 

tags and combinatorial modifications in order to accelerate the searching process. Through two-step 

retrieval in the indexes, the search space of candidate proteoforms could be reduced substantially. 

Finally, we designed a delicate scoring approach based on dynamic programming to locate the 

modifications and simultaneously match the spectrum with all candidate proteoforms derived from a 

certain combination of modifications. pTop was tested on three public data sets. The preprocessing 

experimental results on the human histone data set showed that pParseTD could recall 22% more 

correct precursors while exporting 30% fewer precursors than that of Xtract, on average. Meanwhile, 

pTop could achieve a speed of up to about one to two orders of magnitude faster than that of 
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MS-Align+ on the complex data sets tested. pTop can be downloaded for free at 

http://pfind.ict.ac.cn/software/pTop201505/ 

 

MATERIALS AND METHODS 

General workflow of pTop. pTop, as a novel database search engine to identify intact proteins, 

aimed at significantly improving search efficiency while retaining higher accuracy. Its general 

workflow was designed as shown schematically in Figure 1, which consists of four main procedures 

according to the data streaming direction: 

(i) preprocessing raw mass spectral data; 

(ii) retrieving candidate proteins and combinatorial modifications; 

(iii) locating the modifications and ranking the candidate proteoforms; and  

(iv) estimating the false discovery rate (FDR) and then generating the result report. 

 

Figure 1 Schematic workflow of pTop 

To preprocess both MS and MS/MS raw data, we developed pParseTD—an essential preprocessing 

module in pTop—to first detect potential precursors within the isolation window in MS, and then to 

convert each detected isotopic cluster in MS/MS into its equivalent monoisotopic peak with a single 

charge. This conversion will greatly simplify the subsequent matching process between an MS/MS 

spectrum and its candidate protein. 

For each MS/MS spectrum processed by pParseTD, in order to obtain its candidate proteins from 

the protein database, the sequence tags were firstly extracted therein and then searched against the 

index of sequence tags of the protein database. After that, the candidate combinatorial modifications 

were generated using the mass difference between the precursor and the candidate protein. Through 

these two steps, the search space of the proteoforms decreased tremendously and the identification 

was greatly accelerated. 
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The next procedure was to determine the possible locations of such candidate modifications in a 

coordinated fashion. Here, we designed a delicate scoring function to match the proteoform with the 

input MS/MS spectrum, which promotes its scoring efficiency by the simultaneous matching for such 

different candidate combinations of the modification’s locations. 

Finally, a target-decoy approach was utilized to estimate FDR and determine the scoring threshold. 

This approach is widely used in BUP and was also recently adopted in TDP
27,38

. Each MS/MS spectrum 

preprocessed by pParseTD was searched against the cascaded target and reversed protein database. 

Then all protein-spectrum matches (PrSMs) filtered by an FDR cut-off of 1% were kept into the result 

report. 

Isotopic clusters detection and deconvolution. We used pParseTD, a nontrivial updated version of 

pParse 2.0,
40

 which was originally developed to detect the peptide precursors, to detect intact 

protein precursors in MS. Moreover, pParseTD provided a similar approach for MS/MS deconvolution 

to convert each original MS/MS spectrum into a list of monoisotopic peaks with a single charge. 

As is known, most algorithms for detecting the isotopic clusters were based on the similarity or dot 

product between the experimental isotopic distribution and the averagine theoretical isotopic 

distribution
29,33,41

. However, when the intensity of a peak is not high enough, its isotopic cluster may 

be distorted, which will weaken their similarity. Furthermore, when a few isotopic clusters overlap, 

the similarity-based comparison will become ineffective or insufficient. Therefore, we used, in 

pParseTD, a variety of features to characterize and evaluate the candidate isotopic clusters. Those 

features were obtained mainly from the experimental isotopic clusters, liquid chromatography (LC) 

profiles, and the additional information from the same protein ion with different charge states (more 

details on all eleven features in Table S-1 and Figure S-1).  

In order to integrate those features to evaluate the isotopic clusters, a machine-learning approach 

was introduced into pParseTD. A classification model was trained online, based on the support vector 

machine (SVM) method with a radial basis kernel function. Using this classification model, pParseTD 

can automatically incorporate a variety of features to detect the isotopic clusters and determine their 

charge states. This model can adapt to the different input raw data. 

In the training and predicting sections, several critical problems must be addressed. First, all 

candidate precursors were scored using the values of above features, while only the top ten 

precursors were retained. Then, the candidate in the first place (Top 1) was selected as a positive 

sample, and the tenth, or the last one if there are fewer than ten candidates, as a negative sample. 

Second, when using an SVM to train the model online, the leave-one-out cross validation method 

was employed to reduce the risk of over-fitting. Third, after obtaining the model, each candidate 

isotopic cluster was re-scored by the same model, and only those with a predicted score larger than 

zero were exported. Finally, an offline model in pParseTD would be used if the number of training 

samples was not sufficient. 
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Retrieval of the candidate proteins and their modifications. In fact, most candidate proteins could 

not be matched well with the spectrum if they were chosen according to a mere precursor mass in 

MS. It is the MS/MS in which the fragment peaks provide much more important information related 

to the protein identity that can be used to further reduce the number of candidate proteins. 

Therefore, using the peaks in MS/MS, we first extracted the sequence tags (Figure S-2) in order to 

retrieve the top 100 candidate proteins. Then using the mass differences between the precursor and 

the candidate proteins, we generated the candidate combinatorial modifications according to a list of 

user-defined variable PTMs. Those mass differences imply very important information from which to 

infer the most possible combinatorial modifications or any other variations. They can limit the 

number of all combinations and only those that satisfy the mass constraints are required for later 

scoring. This kind of beneficial mass-related information employed in pTop will substantially improve 

search efficiency, particularly for those proteins with multiple modifications, when compared with 

the ‘shotgun annotation’ in ProSight. To further speed the retrieval of the candidate protein 

sequences and their modifications, we built indexes of sequence tags and combinations of 

user-specified variable modifications before searching. 

Modifications location and proteoforms ranking. As described above, given the candidate protein 

and its possible combinatorial modifications, we could obtain a few different protein variants—i.e., 

proteoforms. The differences among them are only the locations of each modification—that is, their 

theoretical spectra are highly similar. For example, in Figure 2(A), provided that a toy protein 

sequence is ‘KGGAKRHRKV,’ and one variable modification is methylation on lysine(K). We could get 

three proteoforms, which vary in the location of the methylation. Consider two proteoforms with 

methylation on the fifth lysine or the ninth lysine and their theoretical fragment ions (e.g. b and y 

ions). We can generate the theoretical spectra of these two proteoforms, as shown in Figure 2(A). 

The y1, y6, y7, y8, y9 ions (blue) and b1, b2, b3, b4, b9 ions (green) are shared by these two 

proteoforms. Other ions, such as b5, b6, b7, b8 and y2, y3, y4, y5 have shifted due to the mass from 

methylation. The shared fragment ions from different proteoforms could be calculated and matched 

only once. Accordingly, we could scan the protein sequence only once, and count the matched 

fragment ions of all candidate proteoforms generated from the given protein and its combinatorial 

modifications. 

The procedure to locate the modifications on the candidate protein is stated as follows. First, we 

generate the mass list �� of a candidate protein. A protein P = ����…�	 is a sequence of amino 

acids with the length m. The mass list of P is a series of theoretical masses of the fragment ions 

represented as �� = {��
�, ��

�, … , �	��
�, ���, ���, … , �	��

�} for CID or HCD spectrum matching 

(c and z ions for ECD or ETD). Let S = {��, ��, … , ��} be the set of the variable modifications that 

user defined, and θ = {�� , �� , … , ��}  be a set of valid combinatorial modifications, where 

��represents the ��� variable modification in S. The elements in θ are repeatable and disordered. 

For example, θ = {��, ��, ��, ��} is possible. Given the mass list MS of an input MS/MS spectrum, 

the mass list MP of a candidate protein, and the combinatorial modifications θ = {�� , �� , … , ��}, a 

directed acyclic graph (DAG) G is constructed as shown in an example of Figure 2(B). The vertex in the 
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graph is defined as��, ���, where � represents the location of the amino acid in the protein, �� 

denotes the set of modifications on the subsequence from the first amino acid to the ��� one, and 

Bj⊆ θ. For convenience, we add a vertex �0, �!� as the source, where �! is an empty set. The 

vertex �", #� is always the sink. For each amino acid in the protein sequence, there are several 

corresponding vertices in the graph which are in the same layer. For each vertex in the graph G, the 

corresponding weight $%�, ��& is initialized to zero and added by one, if there is a mass in the list 

�'  which could match the mass of {��
� ("����, �	��

� ("�#� ) "����}  within a given 

tolerance, where m�#� denotes the total mass of the modifications in # and "���� denotes the 

total mass of the modifications in ��. For two adjacent-layer vertices	��, �� and �� ( 1, �’�, they 

could be connected by a directed edge, if one of the following two conditions is satisfied. (i) �	 = 	�’; 
(ii) �’	 = 	�⋃{�}, � ∈ θ and the modification � could occur on the�� ( 1���  amino acid. The 

weight of a path in the graph G is defined as the sum of the weights of the traversed vertices. A path 

is valid if it is connected from the source to the sink, that’s to say, every modification in θ occurs on 

protein P. Since each valid path in the graph G represents a proteoform, the best weighted path is 

considered as the best matching proteoform. The problem of modifications location and proteoforms 

ranking is now reduced to an optimal path-finding problem. pTop uses the pDAG
42

 algorithm to find 

the k-best paths.  

  

Figure 2 (A) Theoretical spectra of two proteoforms from the protein sequence of ‘KGGAKRHRKV.’ 

The top panel shows the proteoform with one methylation on the ninth lysine, and the bottom 

shows the proteoform with one methylation on the fifth lysine. From the two spectra, we can see 

that only four b ions (golden) and four y ions (rosy) have shifted, while all others are shared. (B) An 

illustration for locating the modifications by converting the best PrSM to a maximum weighted path 

in the graph. Suppose that the proteoform of the spectrum is ‘K(ac)GGAKR(me2)HRK(me)V,’ which 

indicates the acetylation on the first amino acid K, the di-methylation on the sixth amino acid R, and 

the methylation on the ninth amino acid K. Each red vertex in the graph stands for a pair of matched 

fragment ions. In this case, the maximum weighted path (red) is definite, and from the path, we can 

find the best matched proteoform of the spectrum.
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RESULTS 

Datasets and benchmarks. The performance of pTop 1.0 was tested on three public data sets
21,43,44

 

(details listed in Table S-2). The main results in this manuscript were based on the human histone 

data set 
43

; the results from the other two data sets were summarized in the supporting information. 

To evaluate the accuracy of the precursors detected by the preprocessing module, pParseTD, we 

constructed a precursor benchmark on the human histone data set.
43

 The histone MS data contain 

many high-quality spectra with multiple modifications which are appropriate to test pTop’s efficiency 

under combinatorial modifications. In order to compare the software tools to export multiple 

precursors for the co-eluted spectra, we used MS-Deconv to annotate the precursors in raw files of 

the human histone data set. To ensure the reliability of precursors exported by MS-Deconv, we used 

MS-Align+ to identify all MS/MS spectra. Ultimately, 7,320 reliably identified precursors were 

included in the MSD (MS-Deconv) precursor benchmark. To evaluate the performance of 

deconvolution and deisotoping, we also constructed another peak benchmark by peak annotation in 

MS/MS based on the human histone data set. To generate the peak benchmark in MS/MS, the 

reliable proteoforms were identified by both ProSight and pTop (the numbers of consistent 

identifications were shown in Figure S-3). Then, all theoretical fragment ions with different charge 

states were enumerated, and their isotopic distributions were calculated by an ‘emass’ algorithm
45

. 

The next step was to align the theoretical isotopic clusters with the experimental ones and then to 

calculate their similarities. Finally, the isotopic cluster with a similarity score greater than 0.9 was 

labeled with the charge state of the theoretical one. There were, in total, 69,913 isotopic clusters, 

which were selected to generate the monoisotopic peaks with a single charge, from 2,769 MS/MS 

spectra. These monoisotopic peaks constituted the peak benchmark. 

We first tested the performance of the preprocessing module, pParseTD, on the above two 

benchmarks and compared it with that of Xtract (in ProSight) and MS-Deconv. The recall rates of the 

precursors and MS/MS peaks were compared among these three software tools. Then, we compared 

the performance of pTop with ProSight PC 3.0 and MS-Align+ on the human histone data set in terms 

of accuracy and running time. Since there are some inherent parameters in each software tool, we 

chose the parameters that could balance the accuracy and the speed. ProSight searched against the 

annotated database under the absolute mass mode. MS-Align+, as the open search software, 

searched against the target and decoy protein databases with the limit of the maximum number of 

unexpected modifications on each protein. pTop searched against the target and decoy protein 

databases with a list of user-specified variable modifications and the maximum number of 

modifications on each protein. The FDR used to filter the reliable PrSMs was set as 1% for MS-Align+ 

and pTop. For ProSight, the PrSMs with an E-value less than 0.0001 (default) were reported as the 

reliable identifications. 

Evaluation of the accuracy on precursor detection. We defined a precursor as recalled if the 

absolute value of the mass deviation between the benchmark precursor and the precursor given by 

the preprocessing software was less than 3.1 Da. The recalled precursor rate (RPR) is the number of 
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recalled precursors divided by the total precursor number in MSD benchmark data set. The precision 

of pParseTD was compared with that of Xtract in terms of the number of exported precursors, i.e., 

the average number of precursors for each spectrum. We chose the “Top Down (MS2)” option in 

Xtract to process the raw data. The default settings for this option were listed in Table S-3. The result 

is shown in Table 1. pParseTD recalled about 22% more precursors while exporting 30% fewer 

precursors than those of Xtract. That is, the RPR of pParseTD is 22% higher than that of Xtract, 

although it exported 30% fewer precursors. Similar comparisons were also conducted on the other 

two data sets. The detailed result is shown in Table S-4. For Autopilot data, the RPR of pParseTD is 

about 40% higher than that of Xtract. For E. coli data, both Xtract and pParseTD can achieve to RPR 

97%~98%. This performance difference between these two software tools is related to the sample 

complexity. We will later analyze it in the "Discussion" section. 

Table 1 Comparisons of the recalled precursor rate (RPR) and the number of exported precursors on 

the MSD precursor benchmark 

Data Set #MS/MS
a
 Benchmark

b 
Xtract pParseTD 

#Precursor 

(Avg.)
c
 

Recalled 

Precursor Rate 
#Precursor 

(Avg.) 

Recalled 

Precursor Rate 

H2A 7,270 2,013 30,000 (4.1) 37.9% 15,708 (2.2) 79.8% 

H2B 5,863 2,879 20,155 (3.4) 70.4% 16,378 (2.8) 96.1% 

H3 6,924 1,470 38,026 (5.5) 70.5% 29,244 (4.2) 80.4% 

H4 2,698 958 6,543 (2.4) 88.5% 5,000 (1.7) 90.3% 

All 22,755 7,320 94,724 (4.2) 66.2% 66,330 (2.9) 88.1% 

a
Total number of tandem mass spectra acquired in each raw file in human histone data set. 

b
Number 

of precursors in the MSD precursor benchmark. 
c
Total number of precursors exported from the 

software (#Precursor) and the average number of precursors for each tandem mass spectrum (Avg.), 

which is equal to the total number of exported precursors divided by the number of MS/MS acquired 

(the second column). 

To detect the precursors in MS more accurately, pParseTD not only took the similarity between the 

theoretical and experimental isotopic clusters into consideration, but also used the similarity of LC 

profiles and other information about the same protein precursors with different charge states. In 

addition, a machine-learning method was used in pParseTD to handle the co-eluted precursors. The 

tests revealed that pParseTD achieved higher accuracy than Xtract on the above MSD benchmark. 

Evaluation of the accuracy on monoisotopic peaks in MS/MS. To evaluate the accuracy of the 

monoisotopic masses of the fragment ions in MS/MS, a peak benchmark on the human histone data 

set was constructed, as described previously. Here, we defined a peak as recalled if the absolute 

value of the mass deviation between the benchmark peak and the peak given by the software was 
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less than 20 ppm. The recalled peak rate (RKR) was defined as the number of recalled peaks divided 

by the total peak number in the peak benchmark data set. The recalled intensity rate (RIR) was 

defined as the sum of the intensity of the recalled peaks divided by the total intensity of the 

annotated peaks for each MS/MS spectrum in the peak benchmark data set. The performances of 

deconvolution and deisotoping of Xtract, MS-Deconv and pParseTD were analyzed on the peak 

benchmark. Figures 3(A) and 3(B) show their recalled peak rates and recalled intensity rates, 

respectively. The experimental results show that pParseTD achieved 85.1% RKR and 96.2% RIR, on 

average, in this peak benchmark. Moreover, the RKR of pParseTD was about 15.2% and12.4% higher 

than that of Xtract and MS-Deconv, respectively, and 9.0% and 6.6% higher for RIR. We also carried 

out these similar comparisons in the other two data sets. The detailed results were summarized in 

Table S-5. The test experiments show that pParseTD achieved a higher accuracy for more complex 

samples by integrating a variety of features to recognize the isotopic clusters. The single feature of 

the similarity between the theoretical and experimental isotopic clusters in Xtract and MS-Deconv 

might not be high enough when the intensity of the isotopic cluster is low in complex samples. We 

will also discuss the performance difference on RKR and RIR for different data sets in the "Discussion" 

section. 

 

Figure 3 Recalled peak rates (RKR) (A) and recalled intensity rates (RIR) (B) by Xtract, MS-Deconv, and 

pParseTD in the peak benchmark on human histone data set. ‘H2A’, ‘H2B’, ‘H3’ and ‘H4’ stand for the 

four different raw files, and ‘All’ represents the entire data set. (C) Boxplots of RIRs by Xtract, 

MS-Deconv and pParseTD on 1,528 MS/MS spectra. The medians of the boxplots of RIRs by Xtract, 

MS-Deconv and pParseTD are 90.1%, 93.0% and 97.7%, respectively. 

Furthermore, for each tandem mass spectrum in the peak benchmark, Xtract, MS-Deconv and 

pParseTD output a value of RIR, respectively. The distributions of these RIRs are illustrated in Figure 

3(C). The number of spectra with an RIR above 90% occupies 93% in pParseTD, 65% in MS-Deconv 

and 51% in Xtract. A higher RIR in pParseTD implies that there are more high-intensity peaks recalled, 

which reflects a higher confidence level. 
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Performance comparison among ProSight, MS-Align+ and pTop on the human histone data set. 

The human histone data set was searched by ProSight, MS-Align+ and pTop, respectively. More 

detailed parameters for the database search were listed in Table S-6. In order to compare ProSight 

and pTop under the similar condition, here, we only used the single absolute mass search mode in 

ProSight. For MS-Align+, the shift number was set as the default 2. The numbers of identified spectra 

are 6,144, 9,191 and 6,240 by ProSight, MS-Align+ and pTop, respectively. Among them, 5,847 

spectra within the precursor mass deviation in [)2.2, 482.2]Da are to be further analyzed (more 

details shown in Figure S-4). There are 1,821 consensus identifications among the three identification 

results, which are less than one third of the total identifications by each software tool. The 

comparison of identified spectra is non-trivial, so, here, the number of matched fragment ions is 

analyzed to assess the relative reliability of the identifications.  

The numbers of matched fragment ions in the consensus and individual parts were selected for 

further statistical analysis. Figure 4(A) shows the distributions of the numbers of matched fragment 

ions for ProSight, MS-Align+ and pTop in the consensus identifications. pTop matches more fragments 

than MS-Align+ and ProSight. As shown in Figure 4(B), the number of matched fragment ions in pTop 

individual identifications also tends to be larger than those in MS-Align+ and ProSight. 

 

Figure 4 Distributions of the matched fragment ions. (A) The distributions of the number of matched 

fragment ions in the consensus identifications of ProSight, MS-Align+ and pTop. (B) The distributions 

of the matched fragment ions in the individual identifications of ProSight, MS-Align+ and pTop.  

In summary, ProSight, MS-Align+ and pTop were used to search and analyze three public data sets. 

As shown above, the identifications of pTop show more matched fragment ions both in the 

consensus and in the individual parts. The proteoforms identified in the human histone data set and 

the simulated data sets in the supporting information show that pTop can identify the proteoforms 

with more matched fragment ions. In the other two data sets (Figure S-6), pTop identified about 8% 

more proteins than ProSight and 4% to 46% more than MS-Align+.  

Running time comparison. The preprocessing and search time of pTop were compared with those 

of ProSight and MS-Align+. As shown in Table 2, pParseTD ran about three times faster than 
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MS-Deconv and about ten times faster than Xtract, on average. For the searching speed, pTop was 90 

to 118 times faster than MS-Align+ on the complex data sets (Table 2). 

  Table 2 The running times of ProSight, MS-Align+ and pTop on three public data sets (unit: min)
a
 

Data Sets 
ProSight MS-Align+ pTop 

Xtract Search MS-Deconv Search pParseTD Search 

Human
b
 269 263 194 4625 53 1725 

E. coli 420 495 37 836 34 7 

Autopilot 384 75 71 5756 14 63 

aAll of the running time tests were performed on the same PC (Intel (R) Core (TM) i7 CPU 870 at 2.93 

GHz, Memory 12G). 
b
The search time was recorded in the experiment to search against the human 

histone database by each software. 

To compare the running time of pTop and MS-Align+ in the human histone data set, different 

numbers of modifications were used to search against a small database, which contained only the 

target proteins. The spectra exported from MS-Deconv were used for both MS-Align+ and pTop. The 

shift number of MS-Align+ was set as one or two, respectively. The variable modifications in pTop 

were set as nine modifications described in Table S-6. The maximum number of modifications 

allowed on each protein was one or two in pTop. TopPIC
1
 is an improved implementation of 

MS-Align+. We also tested it in this experiment.  

             Table 3 The running times of pTop, MS-Align+, and TopPIC (unit: min)
a 

 pTop MS-Align+ TopPIC 

 1 PTM 2 PTMs 1 MOD
b
 2 MODs 1 MOD 2 MODs 

H2A 17 19 772 1,191 323 325 

H2B 8 9 701 1,351 436 412 

H3 27 29 986 1,383 235 206 

H4 9 9 444 681 32 32 

Sum 61 67 2,903 4,606 1026 975 

a
All of the running time tests were performed on the same PC (Intel(R) Xeon(R) CPU E52670 at 

2.6GHz, Memory128 G). 
b
The MOD here means the parameter ‘Shift Number’ in MS-Align+ and 

TopPIC. 

As shown in Table 3, with the increase in the number of modifications, the running times of pTop 

and MS-Align+ increased. When the shift number of MS-Align+ was one or two, the running time of 

MS-Align+ was 48 and 69 times of that of pTop with one or two PTMs, respectively.  If we do not 

                                                             

1
TopPIC: http://proteomics.informatics.iupui.edu/software/toppic/manual.html 
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know the target proteins in the sample or if a large protein database should be searched against, the 

running time of MS-Align+ will dramatically increase, reaching more than 20 times, and the memory 

required increases to 40G. It took 14.5 days for MS-Align+ to search the H2A data set against the 

whole human proteins database. pTop can complete such a search task within one day for 9 PTMs or 

54 minutes for 4 PTMs. Compared with MS-Align+, TopPIC’s running times have decreased a lot, as 

shown in Table 3. However, pTop was still about 15 to 17 times faster than TopPIC on this histone 

data set. 

In summary, pTop took two procedures to decrease the search space of the proteoforms—first, it 

identified the sequence of the candidate proteins from the index of sequence tags, and, second, it 

characterized the combinatorial modifications using the mass difference between the theoretical and 

experimental precursors. As a result, the locations of the modifications would be considered only in a 

small search space. MS-Align+ allowed the shift number to be two with its search space expanded to 

2×m×n, where m and n stand for the length of the mass lists of a spectrum and its candidate protein. 

The scale of candidate proteoforms in pTop depends on the number of combinatorial modifications 

under the constraint of the mass deviation of the precursor. For example, for a protein with a length 

of 100, the candidate proteoforms in MS-Align+ might be over 10,000, while it would be only several 

hundred in pTop. So the speedup of pTop, compared with MS-Align+, benefits mainly from the 

decrease in search space. In addition, the total memory requirement of MS-Align+ might go up to 

40G when searching against the human protein database. However, the total memory of pTop is less 

than 1.5G, which can be conducted on a personal computer.
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DISCUSSION 

In order to improve the accuracy of protein precursor masses, we developed pParseTD to 

preprocess the raw data. We have shown its relative superiority in terms of RPR, RKR, or RIR on the 

human histone. Nevertheless, on the E. coli data, pParseTD’s RPR in Table S-4 was similar to that of 

Xtract. One of the main reasons can be attributed to the difference of the sample complexity. The E. 

coli ribosome contains only about 56 proteins.
21

 The relatively higher-quality spectra acquired in MS1 

than the other two samples make both Xtract and pParseTD perform very well on RPR. pParseTD can 

adapt to deal with the co-fragmented spectra by extracting multiple precursors, which leads to an 

improved RPR more significantly for the complex sample than the simple one. Besides the sample 

complexity, the performance comparisons on both RKR and RIR in Table S-5 were also related to the 

width of isolation window in MS1 for Autopilot and E.coli data sets, which is 15 and 20 m/z, 

respectively. A relatively larger window in E.coli data makes pParseTD perform better than Xtract to 

extract more correct MS/MS peaks due to the fact that more peaks will be generated in MS/MS 

under a wider isolation window. 

The averagine model
46

 is adopted by most preprocessing algorithms either in bottom-up or 

top-down strategies. For the latter, there exists a phenomenon that we call “one-Dalton off,” which 

means that there is frequently about one Dalton deviation between the correct precursor and the 

proteoform. In MS1 of the intact proteins, the monoisotopic peak can be calculated from the most 

abundant peak and its relative position in the theoretical isotopic distribution. However, the intensity 

difference between the most abundant peak and its neighbor one might be less than 1% if the mass 

of the precursor is larger than 10 kDa. Furthermore, the relative position of the most abundant peak 

in the theoretical isotopic distribution calculated by the averagine model may be different from the 

real isotopic distribution. For example, the most abundant peak in the theoretical isotopic 

distribution of the human histone H4 protein is the sixth peak, while that of the isotopic distribution 

calculated by the averagine model with a mass equal to 11,299 Da is the seventh one. All of these 

factors would possibly lead to a mass deviation of about ±1 Da from the real monoisotopic mass of 

the precursor ion. Therefore, we suggest that it is better to set the precursor tolerance to be more 

than 1.1 Da. 

The main approach to obtaining the candidate proteins in pTop is to extract the tags from their 

MS/MS. A large mass tolerance will be used for searching if there is no such adequate tag. In addition, 

the comparison in the complex data sets may be unfair for pTop, which takes a strict limitation for 

mass deviation of precursors (such as 3.2 Da) since many PrSMs identified by ProSight have a larger 

mass deviation, such as )401.2 Da. Although the identifications of MS-Align+ have very small 

deviations (such as 20 ppm) from the observed precursor masses, there are still some mass 

deviations which are not explicitly interpreted (e.g.,1660.98Da). For those large mass deviations, the 

corresponding identifications are in fact not verified. More accurate identifications may rely on the 

higher resolution of mass spectrometry and new bioinformatic approaches in the future. 

Page 16 of 20

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

  17  

 

Another issue is to identify the truncated proteoforms, whose N- or C-terminal peptide may be 

truncated. Current pTop 1.0 does not consider specifically about this kind of proteoform 

identification. If only one terminus is truncated, such as an N- or C-terminus, we can enlarge the 

search window to include the truncated version to be matched because the scoring function may still 

find it using the other terminal (not truncated) fragment ions which are not affected a lot. 

Nevertheless, we are ongoing to develop a new version to identify directly these truncated variants. 

 

CONCLUSION 

Bioinformatics in top-down proteomics has played an increasingly important role since the 

increased data sets and enhanced data quality demand for much more computational efforts. In this 

work, we developed pTop 1.0, aiming to improve the accuracy and efficiency of data analysis in TDP. 

Here, a model of multiple characteristics of the precursor ions was obtained by the online training of 

a machine-learning method—SVM. Compared with Xtract (in ProSight), although the number of 

exported precursors was reduced by 30%, the recalled precursor rate (RPR) of pParseTD (in pTop) was 

increased by 22% on a human histone data set. On the other hand, pTop can obtain the sequence of 

the candidate proteins and the combinatorial modifications by retrieving the indexes of sequence 

tags and modifications, which can reduce the search space of the proteoforms significantly. In 

complex data sets, pTop has proven to run about one or two orders of magnitude faster than 

MS-Align+.  

 

 

Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website. 

Figures S-1~S-6 and Tables S-1~S-8 (PDF) 

 

 

ACKNOWLEDGEMENTS 

This research was supported by a grant from National Basic Research Program of China 

(2013CB911203). The authors thank Kun He, Sheng-Bo Fan, Kun Zhang, Hao Yang, Jian-Qiang Wu, 

Hui-Jun Tu and Ji-Li Yin from the Institute of Computing Technology, and Zhe-Yi Liu and Fang-Jun 

Wang from Dalian Institute of Chemical Physics, Chinese Academy of Sciences, and Meng-Qiu Dong 

from National Institute of Biological Sciences, Beijing, for valuable discussions. 

 

Page 17 of 20

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

  18  

 

REFERENCES 

(1) Tran, J. C.; Zamdborg, L.; Ahlf, D. R.; Lee, J. E.; Catherman, A. D.; Durbin, K. R.; Tipton, J. D.; Vellaichamy, 

A.; Kellie, J. F.; Li, M.; Wu, C.; Sweet, S. M.; Early, B. P.; Siuti, N.; LeDuc, R. D.; Compton, P. D.; Thomas, P. M.; 

Kelleher, N. L. Nature 2011, 480, 254-258. 

(2) Kelleher, N. L. Anal Chem 2004, 76, 197A-203A. 

(3) Yates, J. R., 3rd; Kelleher, N. L. Anal Chem 2013, 85, 6151. 

(4) Catherman, A. D.; Skinner, O. S.; Kelleher, N. L. Biochem Biophys Res Commun 2014, 445, 683-693. 

(5) Catherman, A. D.; Durbin, K. R.; Ahlf, D. R.; Early, B. P.; Fellers, R. T.; Tran, J. C.; Thomas, P. M.; Kelleher, 

N. L. Mol Cell Proteomics 2013, 12, 3465-3473. 

(6) Ahlf, D. R.; Thomas, P. M.; Kelleher, N. L. Curr Opin Chem Biol 2013, 17, 787-794. 

(7) Arnaud, C. H. Chemical and Engineering News 2013, 91, 11-17. 

(8) Cui, W.; Rohrs, H. W.; Gross, M. L. Analyst 2011, 136, 3854-3864. 

(9) Ntai, I.; Kim, K.; Fellers, R. T.; Skinner, O. S.; Smith, A. D. t.; Early, B. P.; Savaryn, J. P.; LeDuc, R. D.; 

Thomas, P. M.; Kelleher, N. L. Anal Chem 2014, 86, 4961-4968. 

(10) Calligaris, D.; Villard, C.; Lafitte, D. J Proteomics 2011, 74, 920-934. 

(11) Gregorich, Z. R.; Ge, Y. Proteomics 2014, 14, 1195-1210. 

(12) Peng, Y.; Gregorich, Z. R.; Valeja, S. G.; Zhang, H.; Cai, W. X.; Chen, Y. C.; Guner, H.; Chen, A. J.; 

Schwahn, D. J.; Hacker, T. A.; Liu, X. W.; Ge, Y. Molecular & Cellular Proteomics 2014, 13, 2752-2764. 

(13) Smith, L. M.; Kelleher, N. L.; Consortium for Top Down, P. Nat Methods 2013, 10, 186-187. 

(14) Kelleher, N. L. J Am Soc Mass Spectrom 2012, 23, 1617-1624. 

(15) Nesvizhskii, A. I.; Aebersold, R. Mol Cell Proteomics 2005, 4, 1419-1440. 

(16) Siuti, N.; Kelleher, N. L. Nat Methods 2007, 4, 817-821. 

(17) Moradian, A.; Kalli, A.; Sweredoski, M. J.; Hess, S. Proteomics 2014, 14, 489-497. 

(18) Olsen, J. V.; Macek, B.; Lange, O.; Makarov, A.; Horning, S.; Mann, M. Nat Methods 2007, 4, 709-712. 

(19) Syka, J. E.; Coon, J. J.; Schroeder, M. J.; Shabanowitz, J.; Hunt, D. F. Proc Natl Acad Sci U S A 2004, 101, 

9528-9533. 

(20) Zubarev, R. A.; Horn, D. M.; Fridriksson, E. K.; Kelleher, N. L.; Kruger, N. A.; Lewis, M. A.; Carpenter, B. 

K.; McLafferty, F. W. Anal Chem 2000, 72, 563-573. 

(21) Cannon, J. R.; Cammarata, M. B.; Robotham, S. A.; Cotham, V. C.; Shaw, J. B.; Fellers, R. T.; Early, B. P.; 

Thomas, P. M.; Kelleher, N. L.; Brodbelt, J. S. Anal Chem 2014, 86, 2185-2192. 

Page 18 of 20

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

  19  

 

(22) Meng, F.; Cargile, B. J.; Miller, L. M.; Forbes, A. J.; Johnson, J. R.; Kelleher, N. L. Nat Biotechnol 2001, 19, 

952-957. 

(23) Taylor, G. K.; Kim, Y. B.; Forbes, A. J.; Meng, F.; McCarthy, R.; Kelleher, N. L. Anal Chem 2003, 75, 

4081-4086. 

(24) LeDuc, R. D.; Taylor, G. K.; Kim, Y. B.; Januszyk, T. E.; Bynum, L. H.; Sola, J. V.; Garavelli, J. S.; Kelleher, N. 

L. Nucleic Acids Res 2004, 32, W340-345. 

(25) Zamdborg, L.; LeDuc, R. D.; Glowacz, K. J.; Kim, Y. B.; Viswanathan, V.; Spaulding, I. T.; Early, B. P.; 

Bluhm, E. J.; Babai, S.; Kelleher, N. L. Nucleic Acids Res 2007, 35, W701-706. 

(26) Fellers, R. T.; Greer, J. B.; Early, B. P.; Yu, X.; LeDuc, R. D.; Kelleher, N. L.; Thomas, P. M. Proteomics 

2014. 

(27) Liu, X.; Sirotkin, Y.; Shen, Y.; Anderson, G.; Tsai, Y. S.; Ting, Y. S.; Goodlett, D. R.; Smith, R. D.; Bafna, V.; 

Pevzner, P. A. Mol Cell Proteomics 2012, 11, M111 008524. 

(28) [http://pubs.acs.org/page/vi/2013/topdown.html]. 

(29) Horn, D. M.; Zubarev, R. A.; McLafferty, F. W. J Am Soc Mass Spectrom 2000, 11, 320-332. 

(30) Jaitly, N.; Mayampurath, A.; Littlefield, K.; Adkins, J. N.; Anderson, G. A.; Smith, R. D. BMC 

Bioinformatics 2009, 10, 87. 

(31) Mayampurath, A. M.; Jaitly, N.; Purvine, S. O.; Monroe, M. E.; Auberry, K. J.; Adkins, J. N.; Smith, R. D. 

Bioinformatics 2008, 24, 1021-1023. 

(32) Guner, H.; Close, P. L.; Cai, W.; Zhang, H.; Peng, Y.; Gregorich, Z. R.; Ge, Y. J Am Soc Mass Spectrom 

2014, 25, 464-470. 

(33) Liu, X.; Inbar, Y.; Dorrestein, P. C.; Wynne, C.; Edwards, N.; Souda, P.; Whitelegge, J. P.; Bafna, V.; 

Pevzner, P. A. Mol Cell Proteomics 2010, 9, 2772-2782. 

(34) Garcia, B. A. J Am Soc Mass Spectrom 2010, 21, 193-202. 

(35) Perkel, J. M. Biotechniques 2012, 53, 75-78. 

(36) Frank, A. M.; Pesavento, J. J.; Mizzen, C. A.; Kelleher, N. L.; Pevzner, P. A. Anal Chem 2008, 80, 

2499-2505. 

(37) Liu X, H. S., Wu S, Tolić N, Pasa-Tolić L, Pevzner PA. J Proteome Res 2013, 12, 5830-5838. 

(38) Tsai, Y. S.; Scherl, A.; Shaw, J. L.; MacKay, C. L.; Shaffer, S. A.; Langridge-Smith, P. R.; Goodlett, D. R. J 

Am Soc Mass Spectrom 2009, 20, 2154-2166. 

(39) Li, L.; Tian, Z. Rapid Commun. Mass Spectrom. 2013, 27, 1-10. 

Page 19 of 20

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

  20  

 

(40) Yuan, Z. F.; Liu, C.; Wang, H. P.; Sun, R. X.; Fu, Y.; Zhang, J. F.; Wang, L. H.; Chi, H.; Li, Y.; Xiu, L. Y.; Wang, 

W. P.; He, S. M. Proteomics 2012, 12, 226-235. 

(41) Carvalho, P. C.; Xu, T.; Han, X.; Cociorva, D.; Barbosa, V. C.; Yates, J. R., 3rd. Bioinformatics 2009, 25, 

2734-2736. 

(42) Chi, H.; Chen, H.; He, K.; Wu, L.; Yang, B.; Sun, R. X.; Liu, J.; Zeng, W. F.; Song, C. Q.; He, S. M.; Dong, M. 

Q. J Proteome Res 2013, 12, 615-625. 

(43) Tian, Z.; Tolic, N.; Zhao, R.; Moore, R. J.; Hengel, S. M.; Robinson, E. W.; Stenoien, D. L.; Wu, S.; Smith, 

R. D.; Pasa-Tolic, L. Genome Biol 2012, 13, R86. 

(44) Durbin, K. R.; Fellers, R. T.; Ntai, I.; Kelleher, N. L.; Compton, P. D. Anal Chem 2014, 86, 1485-1492. 

(45) Rockwood, A. L.; Haimi, P. J Am Soc Mass Spectrom 2006, 17, 415-419. 

(46) Senko, M. W.; Beu, S. C.; McLaffertycor, F. W. J Am Soc Mass Spectrom 1995, 6, 229-233. 

 

Table of Contents graphic 

 

 

 

 

 

Page 20 of 20

ACS Paragon Plus Environment

Analytical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


