pFind Studio: a computational solution for mass spectrometry-based proteomics



2024




On the utility of the extracted ion chromatograms for assigning the conjugation sites and side reactions in bioconjugates synthesized by the maleimide-thiol chemistry
Microchemical Journal2024. SatomyPousa et al. Department of Proteomics, Mass Spectrometry Laboratory, Center for Genetic Engineering and Biotechnology, Avenida 31 e/ 158 y 190, Cubanacn, Playa, PO. Box 6162, La Habana, Cuba
ABSTRACT:
Use: pLink



Structure of the plant plastid-encoded RNA polymerase
Cell2024. Vergara-Cruces et al. Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
ABSTRACT:Chloroplast genes encoding photosynthesis-associated proteins are predominantly transcribed by the plastid-encoded RNA polymerase (PEP). PEP is a multi-subunit complex composed of plastid-encoded subunits similar to bacterial RNA polymerases (RNAPs) stably bound to a set of nuclear-encoded PEP-associated proteins (PAPs). PAPs are essential to PEP activity and chloroplast biogenesis, but their roles are poorly defined. Here, we present cryoelectron microscopy (cryo-EM) structures of native 21-subunit PEP and a PEP transcription elongation complex from white mustard (Sinapis alba). We identify that PAPs encase the core polymerase, forming extensive interactions that likely promote complex assembly and stability. During elongation, PAPs interact with DNA downstream of the transcription bubble and with the nascent mRNA. The models reveal details of the superoxide dismutase, lysine methyltransferase, thioredoxin, and amino acid ligase enzymes that are subunits of PEP. Collectively, these data provide a foundation for the mechanistic understanding of chloroplast transcription and its role in plant growth and adaptation.
Use: pLink



Cryo-EM structures of the plant plastid-encoded RNA polymerase
Cell2024. XX Wu et al. Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
ABSTRACT:Chloroplasts are green plastids in the cytoplasm of eukaryotic algae and plants responsible for photosynthesis. The plastid-encoded RNA polymerase (PEP) plays an essential role during chloroplast biogenesis from proplastids and functions as the predominant RNA polymerase in mature chloroplasts. The PEP-centered transcription apparatus comprises a bacterial-origin PEP core and more than a dozen eukaryotic-origin PEP-associated proteins (PAPs) encoded in the nucleus. Here, we determined the cryo-EM structures of Nicotiana tabacum (tobacco) PEP-PAP apoenzyme and PEP-PAP transcription elongation complexes at near-atomic resolutions. Our data show the PEP core adopts a typical fold as bacterial RNAP. Fifteen PAPs bind at the periphery of the PEP core, facilitate assembling the PEP-PAP supercomplex, protect the complex from oxidation damage, and likely couple gene transcription with RNA processing. Our results report the high-resolution architecture of the chloroplast transcription apparatus and provide the structural basis for the mechanistic and functional study of transcription regulation in chloroplasts.
Use: pLink



TopBP1 utilises a bipartite GINS binding mode to support genome replication
Nature communications2024. M Day et al. Molecular Genetics II, Center of Medical Biotechnology, University of Duisburg-Essen, Universittsstrae 2-5, 45141, Essen, Germany
ABSTRACT:Activation of the replicative Mcm2-7 helicase by loading GINS and Cdc45 is crucial for replication origin firing, and as such for faithful genetic inheritance. Our biochemical and structural studies demonstrate that the helicase activator GINS interacts with TopBP1 through two separate binding surfaces, the first involving a stretch of highly conserved amino acids in the TopBP1-GINI region, the second a surface on TopBP1-BRCT4. The two surfaces bind to opposite ends of the A domain of the GINS subunit Psf1. Mutation analysis reveals that either surface is individually able to support TopBP1-GINS interaction, albeit with reduced affinity. Consistently, either surface is sufficient for replication origin firing in Xenopus egg extracts and becomes essential in the absence of the other. The TopBP1-GINS interaction appears sterically incompatible with simultaneous binding of DNA polymerase epsilon (Polepsilon) to GINS when bound to Mcm2-7-Cdc45, although TopBP1-BRCT4 and the Polepsilon subunit PolE2 show only partial competitivity in binding to Psf1. Our TopBP1-GINS model improves the understanding of the recently characterised metazoan pre-loading complex. It further predicts the coordination of three molecular origin firing processes, DNA polymerase epsilon arrival, TopBP1 ejection and GINS integration into Mcm2-7-Cdc45.
Use: pLink



Cryo-EM analyses of dimerized spliceosomes provide new insights into the functions of B complex proteins
EMBO Journal2024. ZhenweiZhang et al. Cellular BiochemistryMax-Planck-Institute for Multidisciplinary Sciences Am Fassberg 11 37077 Gttingen Germany
ABSTRACT:
Use: pLink



Structural insights into histone exchange by human SRCAP complex
CELL DISCOVERY2024. J Yu et al. Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
ABSTRACT:Histone variant H2A.Z is found at promoters and regulates transcription. The ATP-dependent chromatin remodeler SRCAP complex (SRCAP-C) promotes the replacement of canonical histone H2A-H2B dimer with H2A.Z-H2B dimer. Here, we determined structures of human SRCAP-C bound to H2A-containing nucleosome at near-atomic resolution. The SRCAP subunit integrates a 6-subunit actin-related protein (ARP) module and an ATPase-containing motor module. The ATPase-associated ARP module encircles half of the nucleosome along the DNA and may restrain net DNA translocation, a unique feature of SRCAP-C. The motor module adopts distinct nucleosome binding modes in the apo (nucleotide-free), ADP-bound, and ADP-BeFx-bound states, suggesting that ATPase-driven movement destabilizes H2A-H2B by unwrapping the entry DNA and pulls H2A-H2B out of nucleosome through the ZNHIT1 subunit. Structure-guided chromatin immunoprecipitation sequencing analysis confirmed the requirement of H2A-contacting ZNHIT1 in maintaining H2A.Z occupancy on the genome. Our study provides structural insights into the mechanism of H2A-H2A.Z exchange mediated by SRCAP-C.
Use: pLink



An extensive disulfide bond network prevents tail contraction in Agrobacteriumtumefaciens phage Milano
2024. RR Sonani et al. Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
ABSTRACT:
Use: pLink



Multi-scale structures of the mammalian radial spoke and divergence of axonemal complexes in ependymal cilia
Nature Communications2024. Meng, Xueming et al. Key Laboratory of RNA Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
ABSTRACT:Radial spokes (RS) transmit mechanochemical signals between the central pair (CP) and axonemal dynein arms to coordinate ciliary motility. Atomic-resolution structures of metazoan RS and structures of axonemal complexes in ependymal cilia, whose rhythmic beating drives the circulation of cerebrospinal fluid, however, remain obscure. Here, we present near-atomic resolution cryo-EM structures of mouse RS head-neck complex in both monomer and dimer forms and reveal the intrinsic flexibility of the dimer. We also map the genetic mutations related to primary ciliary dyskinesia and asthenospermia on the head-neck complex. Moreover, we present the cryo-ET and sub-tomogram averaging map of mouse ependymal cilia and build the models for RS1-3, IDAs, and N-DRC. Contrary to the conserved RS structure, our cryo-ET map reveals the lack of IDA-b/c/e and the absence of Tektin filaments within the A-tubule of doublet microtubules in ependymal cilia compared with mammalian respiratory cilia and sperm flagella, further exemplifying the structural diversity of mammalian motile cilia. Our findings shed light on the stepwise mammalian RS assembly mechanism, the coordinated rigid and elastic RS-CP interaction modes beneficial for the regulation of asymmetric ciliary beating, and also facilitate understanding on the etiology of ciliary dyskinesia-related ciliopathies and on the ependymal cilia in the development of hydrocephalus.Radial spokes (RS) are crucial in coordinating ciliary motility. Here, authors use cryo-EM and cryo-ET to gain insight into mammalian RS divergence in ependymal cilia, RS assembly mechanism and the structure-function relationships of ciliary and flagellar axonemes.
Use: pLink



Structural mechanisms of autoinhibition and substrate recognition by the ubiquitin ligase HACE1
Nature Structural & Molecular Biology2024. D{\"u}ring, Jonas et al. Research Group Ubiquitin Signaling Specificity, Max Planck Institute for Multidisciplinary Sciences, Gttingen, Germany
ABSTRACT:Ubiquitin ligases (E3s) are pivotal specificity determinants in the ubiquitin system by selecting substrates and decorating them with distinct ubiquitin signals. However, structure determination of the underlying, specific E3-substrate complexes has proven challenging owing to their transient nature. In particular, it is incompletely understood how members of the catalytic cysteine-driven class of HECT-type ligases (HECTs) position substrate proteins for modification. Here, we report a cryogenic electron microscopy (cryo-EM) structure of the full-length human HECT HACE1, along with solution-based conformational analyses by small-angle X-ray scattering and hydrogen-deuterium exchange mass spectrometry. Structure-based functional analyses in vitro and in cells reveal that the activity of HACE1 is stringently regulated by dimerization-induced autoinhibition. The inhibition occurs at the first step of the catalytic cycle and is thus substrate-independent. We use mechanism-based chemical crosslinking to reconstitute a complex of activated, monomeric HACE1 with its major substrate, RAC1, determine its structure by cryo-EM and validate the binding mode by solution-based analyses. Our findings explain how HACE1 achieves selectivity in ubiquitinating the active, GTP-loaded state of RAC1 and establish a framework for interpreting mutational alterations of the HACE1-RAC1 interplay in disease. More broadly, this work illuminates central unexplored aspects in the architecture, conformational dynamics, regulation and specificity of full-length HECTs.Using cryo-EM, SAXS and HDX-MS, the authors mechanistically delineate dimerization-induced autoinhibition of the HECT-type ligase HACE1 and the selectivity of the active ligase monomer for GTP-bound RAC1.
Use: pLink



RNA helicase IGHMBP2 regulates THO complex to ensure cellular mRNA homeostasis
Cell Reports2024. Prusty et al. Department of Biochemistry 1, Biocenter, University of Wrzburg, 97074 Wrzburg, Germany
ABSTRACT:RNA helicases constitute a large protein family implicated in cellular RNA homeostasis and disease development. Here, we show that the RNA helicase IGHMBP2, linked to the neuromuscular disorder spinal muscular atrophy with respiratory distress type 1 (SMARD1), associates with polysomes and impacts translation of mRNAs containing short, GC-rich, and structured 5' UTRs. The absence of IGHMBP2 causes ribosome stalling at the start codon of target mRNAs, leading to reduced translation efficiency. The main mRNA targets of IGHMBP2-mediated regulation encode for components of the THO complex (THOC), linking IGHMBP2 to mRNA production and nuclear export. Accordingly, failure of IGHMBP2 regulation of THOC causes perturbations of the transcriptome and its encoded proteome, and ablation of THOC subunits phenocopies these changes. Thus, IGHMBP2 is an upstream regulator of THOC. Of note, IGHMBP2-dependent regulation of THOC is also observed in astrocytes derived from patients with SMARD1 disease, suggesting that deregulated mRNA metabolism contributes to SMARD1 etiology and may enable alternative therapeutic avenues.
Use: pLink