pFind Studio: a computational solution for mass spectrometry-based proteomics



2021




Reverse chemical ecology suggests putative primate pheromones
Molecular Biology and Evolution2021. Zaremska, V et al. Austrian Inst Technol GmbH, Biosensor Technol, Tulln, Austria
ABSTRACT:Pheromonal communication is widespread among living organisms, but in apes and particularly in humans there is currently no strong evidence for such phenomenon. Among primates, lemurs use pheromones to communicate within members of the same species, whereas in some monkeys such capabilities seem to be lost. Chemical communication in humans appears to be impaired by the lack or malfunctioning of biochemical tools and anatomical structures mediating detection of pheromones. Here, we report on a pheromone-carrier protein (SAL) adopting a "reverse chemical ecology" approach to get insights on the structures of potential pheromones in a representative species of lemurs (Microcebus murinus) known to use pheromones, Old-World monkeys (Cercocebus atys) for which chemical communication has been observed, and humans (Homo sapiens), where pheromones and chemical communication are still questioned. We have expressed the SAL orthologous proteins of these primate species, after reconstructing the gene encoding the human SAL, which is disrupted due to a single base mutation preventing its translation into RNA. Ligand-binding experiments with the recombinant SALs revealed macrocyclic ketones and lactones as the best ligands for all three proteins, suggesting cyclopentadecanone, pentadecanolide, and closely related compounds as the best candidates for potential pheromones. Such hypothesis agrees with the presence of a chemical very similar to hexadecanolide in the gland secretions of Mandrillus sphinx, a species closely related to C. atys. Our results indicate that the function of this carrier protein has not changed much during evolution from lemurs to humans, although its physiological role has been certainly impaired in humans.
Use: pLink



Cryo-EM structure of the yeast TREX complex and coordination with the SR-like protein Gbp2
eLife2021. Xie, YH et al. Vanderbilt Univ, Dept Biochem, Sch Med, Nashville, TN 37232 USA.
ABSTRACT:The evolutionarily conserved TRanscript-EXport (TREX) complex plays central roles during mRNP (messenger ribonucleoprotein) maturation and export from the nucleus to the cytoplasm. In yeast, TREX is composed of the THO sub-complex (Tho2, Hpr1, Text, Mft1, and Thp2), the DEAD box ATPase Sub2, and Yra1. Here we present a 3.7 angstrom cryo-EM structure of the yeast THO center dot Sub2 complex. The structure reveals the intimate assembly of THO revolving around its largest subunit Tho2. THO stabilizes a semi-open conformation of the Sub2 ATPase via interactions with Tho2. We show that THO interacts with the serine-arginine (SR)-like protein Gbp2 through both the RS domain and RRM domains of Gbp2. Cross-linking mass spectrometry analysis supports the extensive interactions between THO and Gbp2, further revealing that RRM domains of Gbp2 are in close proximity to the C-terminal domain of Tho2. We propose that THO serves as a landing pad to configure Gbp2 to facilitate its loading onto mRNP.
Use: pLink



A novel recognition site for polyubiquitin and ubiquitin-like signals in an unexpected region of proteasomal subunit Rpn1
Journal of Biological Chemistry2021. Boughton, AJ et al. Univ Maryland, Ctr Biomol Struct & Org, Dept Chem & Biochem, College Pk, MD 20742 USA.
ABSTRACT:The ubiquitin (Ub)-proteasome system is the primary mechanism for maintaining protein homeostasis in eukaryotes, yet the underlying signaling events and specificities of its components are poorly understood. Proteins destined for degradation are tagged with covalently linked polymeric Ub chains and subsequently delivered to the proteasome, often with the assistance of shuttle proteins that contain Ub-like domains. This degradation pathway is riddled with apparent redundancy-in the form of numerous polyubiquitin chains of various lengths and distinct architectures, multiple shuttle proteins, and at least three proteasomal receptors. Moreover, the largest proteasomal receptor, Rpn1, contains one known binding site for polyubiquitin and shuttle proteins, although several studies have recently proposed the existence of an additional uncharacterized site. Here, using a combination of NMR spectroscopy, photocrosslinking, mass spectrometry, and mutagenesis, we show that Rpn1 does indeed contain another recognition site that exhibits affinities and binding preferences for polyubiquitin and Ub-like signals comparable to those of the known binding site in Rpn1. Surprisingly, this novel site is situated in the N-terminal section of Rpn1, a region previously surmised to be devoid of functionality. We identified a stretch of adjacent helices as the location of this previously uncharacterized binding site, whose spatial proximity and similar properties to the known binding site in Rpn1 suggest the possibility of multivalent signal recognition across the solvent exposed surface of Rpn1. These findings offer new mechanistic insights into signal recognition processes that are at the core of the Ub-proteasome system.
Use: pLink



Identification of Native Cross-Links in Bacillus subtilis Spore Coat Proteins
Journal of Proteome Research2021. Ursem, R et al. Univ Amsterdam, Dept Mol Biol & Microbial Food Safety, NL-1098 XH Amsterdam, Netherlands.
ABSTRACT:The resistance properties of the bacterial spores are partially due to spore surface proteins, similar to 30% of which are said to form an insoluble protein fraction. Previous research has also identified a group of spore coat proteins affected by spore maturation, which exhibit an increased level of interprotein cross-linking. However, the proteins and the types of cross-links involved, previously proposed based on indirect evidence, have yet to be confirmed experimentally. To obtain more insight into the structural basis of the proteinaceous component of the spore coat, we attempted to identify coat cross-links and the proteins involved using new peptide fractionation and bioinformatic methods. Young (day 1) and matured (day 5) Bacillus subtilis spores of wild-type and transglutaminase mutant strains were digested with formic acid and trypsin, and cross-linked peptides were enriched using strong cation exchange chromatography. The enriched crosslinked peptide fractions were subjected to Fourier-transform ion cyclotron resonance tandem mass spectrometry, and the high-quality fragmentation data obtained were analyzed using two specialized software tools, pLink2 and XiSearch, to identify cross-links. This analysis identified specific disulfide bonds between coat proteins CotE-CotE and CotJA-CotJC, obtained evidence of disulfide bonds in the spore crust proteins CotX, CotY, and CotZ, and identified dityrosine and epsilon-(gamma)-glutamyl-lysine cross-linked coat proteins. The findings in this Letter are the first direct biochemical data on protein cross-linking in the spore coat and the first direct evidence of the cross-linked building blocks of the highly ordered and resistant structure called the spore coat.
Use: pLink



The Odorant-Binding Proteins of the Spider Mite Tetranychus urticae
International Journal of Molecular Sciences2021. Zhu, J et al. Austrian Inst Technol GmbH, Biosensor Technol, Konrad Lorenz Str 24, A-3430 Tulln, Austria.
ABSTRACT:Spider mites are one of the major agricultural pests, feeding on a large variety of plants. As a contribution to understanding chemical communication in these arthropods, we have characterized a recently discovered class of odorant-binding proteins (OBPs) in Tetranychus urticae. As in other species of Chelicerata, the four OBPs of T. urticae contain six conserved cysteines paired in a pattern (C1-C6, C2-C3, C4-C5) differing from that of insect counterparts (C1-C3, C2-C5, C4-C6). Proteomic analysis uncovered a second family of OBPs, including twelve members that are likely to be unique to T. urticae. A three-dimensional model of TurtOBP1, built on the recent X-ray structure of Varroa destructor OBP1, shows protein folding different from that of insect OBPs, although with some common features. Ligand-binding experiments indicated some affinity to coniferyl aldehyde, but specific ligands may still need to be found among very large molecules, as suggested by the size of the binding pocket.
Use: pLink



Redox-sensitive CDC-42 clustering promotes wound closure in C. elegans
Cell reports2021. Xu, JX et al. Zhejiang Univ, Ctr Stem Cell & Regenerat Med, Sch Med, Affiliated Hosp 2, Hangzhou 310058, Peoples R China.
ABSTRACT:Tissue damage induces immediate-early signals, activating Rho small GTPases to trigger actin polymerization essential for laterwoundrepair. However, how tissue damage is sensed to activate Rho small GTPases locally remains elusive. Here, we found that wounding theC.elegansepidermis induces rapid relocalization ofCDC-42into plasma membrane-associated clusters, which subsequently recruits WASP/WSP-1 to trigger actin polymerization to close thewound.Inaddition, wounding induces a local transient increase and subsequent reduction of H2O2, which negatively regulates theclusteringofCDC-42andwoundclosure. CDC42 CAAX motif-mediated prenylation and polybasic region-mediated cation-phospholipid interaction are both required for itsclustering. Cysteine residues participateinintermolecular disulfide bonds to reduce membrane association and are required for negative regulation ofCDC-42clusteringby H2O2. Collectively, our findings suggest that H2O2-regulated fine-tuning ofCDC-42localization can create a distinct biomole
Use: pLink



HSP-90/kinase complexes are stabilized by the large PPIase FKB-6
Scientific Reports2021. Sima, S et al. Tech Univ Munich, Ctr Integrated Prot Res, Dept Chem, Lichtenbergstr 4, D-85748 Garching, Germany.
ABSTRACT:Protein kinases are important regulators in cellular signal transduction. As one major type of Hsp90 client, protein kinases rely on the ATP-dependent molecular chaperone Hsp90, which maintains their structure and supports their activation. Depending on client type, Hsp90 interacts with different cofactors. Here we report that besides the kinase-specific cofactor Cdc37 large PPIases of the Fkbp-type strongly bind to kinase center dot Hsp90 center dot Cdc37 complexes. We evaluate the nucleotide regulation of these assemblies and identify prominent interaction sites in this quaternary complex. The synergistic interaction between the participating proteins and the conserved nature of the interaction suggests functions of the large PPIases Fkbp51/Fkbp52 and their nematode homolog FKB-6 as contributing factors to the kinase cycle of the Hsp90 machinery.
Use: pLink



Binding of cytochrome P450 27C1, a retinoid desaturase, to its accessory protein adrenodoxin
Archives of Biochemistry and Biophysics2021. Glass, Sarah M et al. Department of Biochemistry, Vanderbilt University School of Medicine, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, Tennessee, 37232-0146, United States.
ABSTRACT:Of the 57 human cytochrome P450 (P450) enzymes, seven are mitochondrial: 11A1, 11B1, 11B2, 24A1, 27A1, 27B1, and 27C1. Mitochondrial P450s utilize an electron transport system with adrenodoxin (Adx) and NADPH-adrenodoxin reductase (AdR). AdR reduces Adx, which then transfers electrons to the P450. The interactions between proteins in the mitochondrial P450 system are largely driven by electrostatic interactions, though the specifics vary depending on the P450. Unlike other mitochondrial P450s, the interaction between P450 27C1, a retinoid 3,4-desaturase expressed in the skin, and Adx remains largely uncharacterized. In this work, we utilized an Alexa Fluor 488 C5 maleimide-labeled Adx to measure binding affinities between Adx and P450 27C1 or AdR. Both proteins bound Adx tightly, with Kd values<100nM, and binding affinities decreased with increasing ionic strength, supporting the role of electrostatic interactions in mediating these interactions. Cross-linking mass spectrometry and computational modeling were performed to identify interactions between P450 27C1 and Adx. While the residues of Adx identified in interactions were consistent with studies of other mitochondrial P450s, the binding interface of P450 27C1 was quite large and supported multiple Adx binding positions, including ones outside of the canonical Adx binding site. Additionally, Adx did not appear to be an allosteric effector of P450 27C1 substrate binding, in contrast to some other mitochondrial P450s. Overall, we conclude that P450-Adx interactions are P450-specific. Copyright 2021 Elsevier Inc. All rights reserved.
Use: pLink



A new non-classical fold of varroa odorant-binding proteins reveals a wide open internal cavity
Scientific Reports2021. Amigues, B et al. Aix Marseille Univ AMU, CNRS, Architecture & Fonct Macromol Biol AFMB, UMR 6098, Campus Luminy,Case 932, F-13288 Marseille 09, France.
ABSTRACT:Odorant-binding proteins (OBPs), as they occur in insects, form a distinct class of proteins that apparently has no closely related representatives in other animals. However, ticks, mites, spiders and millipedes contain genes encoding proteins with sequence similarity to insect OBPs. In this work, we have explored the structure and function of such non-insect OBPs in the mite Varroa destructor, a major pest of honey bee. Varroa OBPs present six cysteines paired into three disulphide bridges, but with positions in the sequence and connections different from those of their insect counterparts. VdesOBP1 structure was determined in two closely related crystal forms and appears to be a monomer. Its structure assembles five alpha-helices linked by three disulphide bridges, one of them exhibiting a different connection as compared to their insect counterparts. Comparison with classical OBPs reveals that the second of the six alpha-helices is lacking in VdesOBP1. Ligand-binding experiments revealed molecules able to bind only specific OBPs with a moderate affinity, suggesting that either optimal ligands have still to be identified, or post-translational modifications present in the native proteins may be essential for modulating binding activity, or else these OBPs might represent a failed attempt in evolution and are not used by the mites.
Use: pLink



Structural characterization of KKT4, an unconventional microtubule-binding kinetochore protein
Structure2021. Ludzia, P et al. Univ Oxford, Dept Biochem, Oxford OX1 3QU, England.
ABSTRACT:The kinetochore is the macromolecular machinery that drives chromosome segregation by interacting with spindle microtubules. Kinetoplastids (such as Trypanosoma brucei), a group of evolutionarily divergent eukaryotes, have a unique set of kinetochore proteins that lack any significant homology to canonical kinetochore components. To date, KKT4 is the only kinetoplastid kinetochore protein that is known to bind microtubules. Here we use X-ray crystallography, NMR spectroscopy, and crosslinking mass spectrometry to characterize the structure and dynamics of KKT4. We show that its microtubule-binding domain consists of a coiled-coil structure followed by a positively charged disordered tail. The structure of the C-terminal BRCT domain of KKT4 reveals that it is likely a phosphorylation-dependent protein-protein interaction domain. The BRCT domain interacts with the N-terminal region of the KKT4 microtubule-binding domain and with a phosphopeptide derived from KKT8. Taken together, these results provide structural insights into the unconventional kinetoplastid kinetochore protein KKT4.
Use: pLink; pParse