pFind Studio: a computational solution for mass spectrometry-based proteomics



2021




Proteogenomic characterization of the pathogenic fungus Aspergillus flavus reveals novel genes involved in aflatoxin production
Molecular & Cellular Proteomics2021. Yang, Mingkun et al. Chinese Acad Sci, Inst Hydrobiol, State Key Lab Freshwater Ecol & Biotechnol, Wuhan, Peoples R China; Fujian Agr & Forestry Univ, Key Lab Pathogen Fungi & Mycotoxins Fujian Prov, Fuzhou, Peoples R China; Fujian Agr & Forestry Univ, Sch Life Sci, Fuzhou, Peoples R China
ABSTRACT:Aspergillus flavus (A. flavus), a pathogenic fungus, can produce carcinogenic and toxic aflatoxins that are a serious agricultural and medical threat worldwide. Attempts to decipher the aflatoxin biosynthetic pathway have been hampered by the lack of a high-quality genome annotation for A. flavus. To address this gap, we performed a comprehensive proteogenomic analysis using high-accuracy mass spectrometry data for this pathogen. The resulting high-quality data set confirmed the translation of 8724 previously predicted genes and identified 732 novel proteins, 269 splice variants, 447 single amino acid variants, 188 revised genes. A subset of novel proteins was experimentally validated by RT-PCR and synthetic peptides. Further functional annotation suggested that a number of the identified novel proteins may play roles in aflatoxin biosynthesis and stress responses in A. flavus. This comprehensive strategy also identified a wide range of posttranslational modifications (PTMs), including 3461 modification sites from 1765 proteins. Functional analysis suggested the involvement of these modified proteins in the regulation of cellular metabolic and aflatoxin biosynthetic pathways. Together, we provided a high-quality annotation of A. flavus genome and revealed novel insights into the mechanisms of aflatoxin production and pathogenicity in this pathogen.
Use: pFind



Antibody-free enrichment method for proteome-wide analysis of endogenous SUMOylation sites
Analytica Chimica Acta2021. Li, Y et al. Chinese Acad Sci, Dalian Inst Chem Phys, Natl Chromatog R&A Ctr, CAS Key Lab Separat Sci Analyt Chem, Dalian 116023, Peoples R China.
ABSTRACT:SUMOylation is a reversible post-translational modification that plays crucial roles in numerous cellular processes. Although anti-SUMO antibodies have been applied to analyze exogenous and endogenous SUMOylation, such immunoprecipitation enrichment strategy is applicable only for the enrichment of one specific SUMO type in mammalian cells, unable to map the global landscape of all endogenous SUMOylation simultaneously. To address this issue, we proposed an antibody-free strategy to enrich and profile endogenous SUMO1/2/3-modified peptides simultaneously. Upon trypsin digestion, the SUMO1- and SUMO2/3-modified peptides contained SUMO remnants with 7 and 9 acidic amino acids respectively, which carried more negative charges at high pH and could interact with strong anion exchange (SAX) materials more strongly than non-SUMOylated peptides, thus enabling the specific enrichment of endogenous SUMOylated peptides. Followed by the secondary digestion with Asp-N/Glu-C to generate smaller SUMOylated peptides with proper length for MS identification, off-line high-pH C18 prefractionation and low pH nanoRPLC-ESI-MS/MS analysis, 177 SUMO1-modified sites and 74 SUMO2/3-modified sites were unbiasedly identified in HeLa cell lysate. To the best of our knowledge, this was the first antibody-free strategy to comprehensively profile various endogenous SUMOylation sites, demonstrating the great potential in the comprehensive analysis of endogenous SUMOylation across various species and organs, which might further facilitate the understanding of SUMO's function in physiology and pathology. (C) 2021 Elsevier B.V. All rights reserved.
Use: pFind



HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells
Science2021. Yu, HY et al. Univ Calif San Diego, Ludwig Inst Canc Res, La Jolla, CA 92093 USA.
ABSTRACT:The RNA binding protein TDP-43 forms intranuclear or cytoplasmic aggregates in age-related neurodegenerative diseases. In this study, we found that RNA binding-deficient TDP-43 (produced by neurodegeneration-causing mutations or posttranslational acetylation in its RNA recognition motifs) drove TDP-43 demixing into intranuclear liquid spherical shells with liquid cores. These droplets, which we named "anisosomes", have shells that exhibit birefringence, thus indicating liquid crystal formation. Guided by mathematical modeling, we identified the primary components of the liquid core to be HSP70 family chaperones, whose adenosine triphosphate (ATP)-dependent activity maintained the liquidity of shells and cores. In vivo proteasome inhibition within neurons, to mimic aging-related reduction of proteasome activity, induced TDP-43-containing anisosomes. These structures converted to aggregates when ATP levels were reduced. Thus, acetylation, HSP70, and proteasome activities regulate TDP-43 phase separation and conversion into a gel or solid phase.
Use: pFind; pParse; pQuant



DeepLC can predict retention times for peptides that carry as-yet unseen modifications
Nature methods2021. Bouwmeester, R et al. VIB, VIB UGent Ctr Med Biotechnol, Ghent, Belgium.
ABSTRACT:DeepLC, a deep learning-based peptide retention time predictor, can predict retention times for unmodified peptides as well as peptides with previously unseen modifications. The inclusion of peptide retention time prediction promises to remove peptide identification ambiguity in complex liquid chromatography-mass spectrometry identification workflows. However, due to the way peptides are encoded in current prediction models, accurate retention times cannot be predicted for modified peptides. This is especially problematic for fledgling open searches, which will benefit from accurate retention time prediction for modified peptides to reduce identification ambiguity. We present DeepLC, a deep learning peptide retention time predictor using peptide encoding based on atomic composition that allows the retention time of (previously unseen) modified peptides to be predicted accurately. We show that DeepLC performs similarly to current state-of-the-art approaches for unmodified peptides and, more importantly, accurately predicts retention times for modifications not seen during training. Moreover, we show that DeepLC's ability to predict retention times for any modification enables potentially incorrect identifications to be flagged in an open search of a wide variety of proteome data.
Use: pFind



Global profiling of distinct cysteine redox forms reveals wide-ranging redox regulation in C. elegans
Nature communications2021. Meng, J et al. Joslin Diabet Ctr, Div Res, 1 Joslin Pl, Boston, MA 02215 USA.
ABSTRACT:Post-translational changes in the redox state of cysteine residues can rapidly and reversibly alter protein functions, thereby modulating biological processes. The nematode C. elegans is an ideal model organism for studying cysteine-mediated redox signaling at a network level. Here we present a comprehensive, quantitative, and site-specific profile of the intrinsic reactivity of the cysteinome in wild-type C. elegans. We also describe a global characterization of the C. elegans redoxome in which we measured changes in three major cysteine redox forms after H2O2 treatment. Our data revealed redox-sensitive events in translation, growth signaling, and stress response pathways, and identified redox-regulated cysteines that are important for signaling through the p38 MAP kinase (MAPK) pathway. Our in-depth proteomic dataset provides a molecular basis for understanding redox signaling in vivo, and will serve as a valuable and rich resource for the field of redox biology. Reversible cysteine oxidative modifications have emerged as important mechanisms that alter protein function. Here the authors globally assess the cysteine reactivity and an array of cysteine oxidative modifications in C. elegans, providing insights into redox signaling at the organismal level.
Use: pFind; pQuant



Structure of the Arabidopsis thaliana glutamate receptor-like channel GLR3. 4
Molecular cell2021. Green, MN et al. Columbia Univ, Dept Biochem & Mol Biophys, 650 West 168th St, New York, NY 10032 USA.
ABSTRACT:Glutamate receptor-like channels (GLRs) play vital roles in various physiological processes in plants, such as wound response, stomatal aperture control, seed germination, root development, innate immune response, pollen tube growth, and morphogenesis. Despite the importance of GLRs, knowledge about their molecular organization is limited. Here we use X-ray crystallography and single-particle cryo-EM to solve structures of the Arabidopsis thaliana GLR3.4. Our structures reveal the tetrameric assembly of GLR3.4 subunits into a three-layer domain architecture, reminiscent of animal ionotropic glutamate receptors (iGluRs). However, the non-swapped arrangement between layers of GLR3.4 domains, binding of glutathione through S-glutathionylation of cysteine C205 inside the amino-terminal domain clamshell, unique symmetry, inter-domain interfaces, and ligand specificity distinguish GLR3.4 from representatives of the iGluR family and suggest distinct features of the GLR gating mechanism. Our work elaborates on the principles of GLR architecture and symmetry and provides a molecular template for deciphering GLR-dependent signaling mechanisms in plants.
Use: pFind



Spatiotemporally resolved subcellular phosphoproteomics
PNAS2021. Liu, YJ et al. Peking Univ, PKU IDG McGovern Inst Brain Res, AH-100871 Beijing, Peoples R China.
ABSTRACT:Proteome-wide profiling of protein phosphorylation has been widely used to reveal the underlying mechanism of diverse cellular signaling events. Yet, characterizing subcellular phosphoproteome with high spatial-temporal resolution has remained challenging. Herein, we developed a subcellular-specific uncaging-assisted biotinylation and mapping of phosphoproteome (SubMAPP) strategy to monitor the phosphorylation dynamics of subcellular proteome in living cells and animals. Our method capitalizes on the genetically encoded bioorthogonal decaging strategy, which enables the rapid activation of subcellular localized proximity labeling biotin ligase through either light illumination or small-molecule triggers. By further adopting an integrated orthogonal pull-down strategy with quantitative mass spectrometry, SubMAPP allowed for the investigation of subcellular phosphoproteome dynamics, revealing the altered phosphorylation patterns of endoplasmic reticulum (ER) luminal proteins under ER stress. Finally, we further expanded the scope of the SubMAPP strategy to primary neuron culture and living mice.
Use: pFind



Wittig reagents for chemoselective sulfenic acid ligation enables global site stoichiometry analysis and redox-controlled mitochondrial targeting
Nature Chemistry2021. Shi, YL et al. Scripps Res Inst, Dept Chem, Jupiter, FL 33458 USA.
ABSTRACT:Triphenylphosphonium ylides, known as Wittig reagents, are one of the most commonly used tools in synthetic chemistry. Despite their considerable versatility, Wittig reagents have not yet been explored for their utility in biological applications. Here we introduce a chemoselective ligation reaction that harnesses the reactivity of Wittig reagents and the unique chemical properties of sulfenic acid, a pivotal post-translational cysteine modification in redox biology. The reaction, which generates a covalent bond between the ylide nucleophilic alpha-carbon and electrophilic gamma-sulfur, is highly selective, rapid and affords robust labelling under a range of biocompatible reaction conditions, which includes in living cells. We highlight the broad utility of this conjugation method to enable site-specific proteome-wide stoichiometry analysis of S-sulfenylation and to visualize redox-dependent changes in mitochondrial cysteine oxidation and redox-triggered triphenylphosphonium generation for the controlled delivery of small molecules to mitochondria.
Use: pFind



Potential use of serum proteomics for monitoring COVID-19 progression to complement RT-PCR detection
Journal of proteome research2021. Zhang, Y et al. Wenzhou Med Univ, Taizhou Hosp, Linhai 317000, Zhejiang, Peoples R China; Westlake Univ, Sch Life Sci, Key Lab Struct Biol Zhejiang Prov, Hangzhou 310000, Zhejiang, Peoples R China; Westlake Lab Life Sci & Biomed, Ctr Infect Dis Res, Hangzhou 310000, Zhejiang, Peoples R China; Westlake Inst Adv Study, Inst Basic Med Sci, Hangzhou 310000, Zhejiang, Peoples R China
ABSTRACT:RT-PCR is the primary method to diagnose COVID-19 and is also used to monitor the disease course. This approach, however, suffers from false negatives due to RNA instability and poses a high risk to medical practitioners. Here, we investigated the potential of using serum proteomics to predict viral nucleic acid positivity during COVID19. We analyzed the proteome of 275 inactivated serum samples from 54 out of 144 COVID-19 patients and shortlisted 42 regulated proteins in the severe group and 12 in the non-severe group. Using these regulated proteins and several key clinical indexes, including days after symptoms onset, platelet counts, and magnesium, we developed two machine learning models to predict nucleic acid positivity, with an AUC of 0.94 in severe cases and 0.89 in non-severe cases, respectively. Our data suggest the potential of using a serum protein-based machine learning model to monitor COVID-19 progression, thus complementing swab RT-PCR tests. More efforts are required to promote this approach into clinical practice since mass spectrometry-based protein measurement is not currently widely accessible in clinic.
Use: pFind; pDeep



Highly Efficient Enrichment of O-GlcNAc Glycopeptides Based on Chemical Oxidation and Reversible Hydrazide Chemistry
Analytical Chemistry2021. Chen, Y et al. Chinese Acad Sci, Dalian Inst Chem Phys, CAS Key Lab Separat Sci Analyt Chem, Dalian 116023, Peoples R China; Univ Chinese Acad Sci, Beijing 100049, Peoples R China
ABSTRACT:Protein O-GlcNAcylation has been implicated in a broad range of cellular processes, while the functional research is still lagging behind other post-translational modification (PTMs), as a result of the low stoichiometry and limited enrichment efficiency. Herein, a strategy, named CHO-GlcNAc, was developed for O-GlcNAc glycopeptide enrichment. In this strategy, the O-GlcNAc glycopeptides were first enzymatically labeled with a Gal moiety, followed by chemical oxidation to efficiently introduce the aldehyde groups. The labeled O-GlcNAc glycopeptides could be efficiently enriched based on the equilibrium between the hydrazine and oxime bonds. Good specificity of the glycopeptide enrichment was observed from the mixtures of glycopeptide and nonglycopeptides using the CHO-GlcNAc method. Then, it was applied to analyze O-GlcNAcylation in the nucleus of HeLa cells, and 829 potential O-GlcNAcylation sites on 274 glycoproteins were identified, including the two readers of m6A (YTHDF1 and YTHDF3), which could provide clues for the mechanism of crosstalk between O-GlcNAcylation and other PTMs of proteins and RNA. Thus, this method could be a versatile tool for the proteomic analysis of O-GlcNAcylation.
Use: pFind