pFind Studio: a computational solution for mass spectrometry-based proteomics



2016




Dynamic and flexible H3K9me3 bridging via HP1 dimerization establishes a plastic state of condensed chromatin
Nature communications2016. Hiragami-Hamada, K et al. Max Planck Inst Biophys Chem, Lab Chromatin Biochem, Fassberg 11, D-37077 Gottingen, Germany.
ABSTRACT:Histone H3 trimethylation of lysine 9 (H3K9me3) and proteins of the heterochromatin protein 1 (HP1) family are hallmarks of heterochromatin, a state of compacted DNA essential for genome stability and long-term transcriptional silencing. The mechanisms by which H3K9me3 and HP1 contribute to chromatin condensation have been speculative and controversial. Here we demonstrate that human HP1 beta is a prototypic HP1 protein exemplifying most basal chromatin binding and effects. These are caused by dimeric and dynamic interaction with highly enriched H3K9me3 and are modulated by various electrostatic interfaces. HP1 beta bridges condensed chromatin, which we postulate stabilizes the compacted state. In agreement, HP1 beta genome-wide localization follows H3K9me3-enrichment and artificial bridging of chromatin fibres is sufficient for maintaining cellular heterochromatic conformation. Overall, our findings define a fundamental mechanism for chromatin higher order structural changes caused by HP1 proteins, which might contribute to the plastic nature of condensed chromatin.
Use: pLink



Trifunctional cross-linker for mapping protein-protein interaction networks and comparing protein conformational states
eLife2016. Tan, D et al. Chinese Acad Med Sci, Peking Union Med Coll, Grad Program, Beijing 100730, Peoples R China.
ABSTRACT:To improve chemical cross-linking of proteins coupled with mass spectrometry (CXMS), we developed a lysine-targeted enrichable cross-linker containing a biotin tag for affinity purification, a chemical cleavage site to separate cross-linked peptides away from biotin after enrichment, and a spacer arm that can be labeled with stable isotopes for quantitation. By locating the flexible proteins on the surface of 70S ribosome, we show that this trifunctional cross-linker is effective at attaining structural information not easily attainable by crystallography and electron microscopy. From a crude Rrp46 immunoprecipitate, it helped identify two direct binding partners of Rrp46 and 15 protein-protein interactions (PPIs) among the co-immunoprecipitated exosome subunits. Applying it to E. coli and C. elegans lysates, we identified 3130 and 893 inter-linked lysine pairs, representing 677 and 121 PPIs. Using a quantitative CXMS workflow we demonstrate that it can reveal changes in the reactivity of lysine residues due to protein-nucleic acid interaction.
Use: pLink; pQuant



Probes of ubiquitin E3 ligases enable systematic dissection of parkin activation
Nature chemical biology2016. Pao, KC et al. Univ Dundee, Med Res Council Prot Phosphorylat & Ubiquitylat U, Dundee, Scotland.
ABSTRACT:E3 ligases represent an important class of enzymes, yet there are currently no chemical probes for profiling their activity. We develop a new class of activity-based probe by re-engineering a ubiquitin-charged E2 conjugating enzyme and demonstrate the utility of these probes by profiling the transthiolation activity of the RING-in-between-RING (RBR) E3 ligase parkin in vitro and in cellular extracts. Our study provides valuable insight into the roles, and cellular hierarchy, of distinct phosphorylation events in parkin activation. We also profile parkin mutations associated with patients with Parkinson's disease and demonstrate that they mediate their effect largely by altering transthiolation activity. Furthermore, our probes enable direct and quantitative measurement of endogenous parkin activity, revealing that endogenous parkin is activated in neuronal cell lines (>= 75%) in response to mitochondrial depolarization. This new technology also holds promise as a novel biomarker of PINK1-parkin signaling, as demonstrated by its compatibility with samples derived from individuals with Parkinson's disease.
Use: pLink



UtpA and UtpB chaperone nascent pre-ribosomal RNA and U3 snoRNA to initiate eukaryotic ribosome assembly
Nature Communications2016. Hunziker, M et al. Rockefeller Univ, Lab Prot & Nucle Acid Chem, New York, NY 10065 USA.
ABSTRACT:Early eukaryotic ribosome biogenesis involves large multi-protein complexes, which co-transcriptionally associate with pre-ribosomal RNA to form the small subunit processome. The precise mechanisms by which two of the largest multi-protein complexes-UtpA and UtpB-interact with nascent pre-ribosomal RNA are poorly understood. Here, we combined biochemical and structural biology approaches with ensembles of RNA-protein cross-linking data to elucidate the essential functions of both complexes. We show that UtpA contains a large composite RNA-binding site and captures the 50 end of pre-ribosomal RNA. UtpB forms an extended structure that binds early pre-ribosomal intermediates in close proximity to architectural sites such as an RNA duplex formed by the 50 ETS and U3 snoRNA as well as the 30 boundary of the 18S rRNA. Both complexes therefore act as vital RNA chaperones to initiate eukaryotic ribosome assembly.
Use: pLink



Structural Insights into the PorK and PorN Components of the Porphyromonas gingivalis Type IX Secretion System
PLOS Pathogens2016. Gorasia, DG et al. Univ Melbourne, Melbourne Dent Sch, Oral Hlth CRC, Inst Bio21, Melbourne, Vic, Australia.
ABSTRACT:The type IX secretion system (T9SS) has been recently discovered and is specific to Bacteroidetes species. Porphyromonas gingivalis, a keystone pathogen for periodontitis, utilizes the T9SS to transport many proteins including the gingipain virulence factors across the outer membrane and attach them to the cell surface via a sortase-like mechanism. At least 11 proteins have been identified as components of the T9SS including PorK, PorL, PorM, PorN and PorP, however the precise roles of most of these proteins have not been elucidated and the structural organization of these components is unknown. In this study, we purified PorK and PorN complexes from P. gingivalis and using electron microscopy we have shown that PorN and the PorK lipoprotein interact to form a 50 nm diameter ring-shaped structure containing approximately 32-36 subunits of each protein. The formation of these rings was dependent on both PorK and PorN, but was independent of PorL, PorM and PorP. PorL and PorM were found to form a separate stable complex. PorK and PorN were protected from proteinase K cleavage when present in undisrupted cells, but were rapidly degraded when the cells were lysed, which together with bioinformatic analyses suggests that these proteins are exposed in the periplasm and anchored to the outer membrane via the PorK lipid. Chemical cross-linking and mass spectrometry analyses confirmed the interaction between PorK and PorN and further revealed that they interact with the PG0189 outer membrane protein. Furthermore, we established that PorN was required for the stable expression of PorK, PorL and PorM. Collectively, these results suggest that the ring-shaped PorK/N complex may form part of the secretion channel of the T9SS. This is the first report showing the structural organization of any T9SS component.
Use: pLink



Molecular basis for CPAP-tubulin interaction in controlling centriolar and ciliary length
NATURE COMMUNICATIONS2016. Zheng, XD et al. Tsinghua Univ, Beijing Adv Innovat Ctr Struct Biol, Sch Med, Dept Basic Med Sci, Beijing 100084, Peoples R China.
ABSTRACT:Centrioles and cilia are microtubule-based structures, whose precise formation requires controlled cytoplasmic tubulin incorporation. How cytoplasmic tubulin is recognized for centriolar/ciliary-microtubule construction remains poorly understood. Centrosomal-P4.1-associated-protein (CPAP) binds tubulin via its PN2-3 domain. Here, we show that a C-terminal loop-helix in PN2-3 targets beta-tubulin at the microtubule outer surface, while an N-terminal helical motif caps microtubule's alpha-beta surface of beta-tubulin. Through this, PN2-3 forms a high-affinity complex with GTP-tubulin, crucial for defining numbers and lengths of centriolar/ciliary-microtubules. Surprisingly, two distinct mutations in PN2-3 exhibit opposite effects on centriolar/ciliary-microtubule lengths. CPAP(F375A), with strongly reduced tubulin interaction, causes shorter centrioles and cilia exhibiting doublet-instead of triplet-microtubules. CPAP(EE343RR) that unmasks the beta-tubulin polymerization surface displays slightly reduced tubulin-binding affinity inducing over-elongation of newly forming centriolar/ciliary-microtubules by enhanced dynamic release of its bound-tubulin. Thus CPAP regulates delivery of its bound-tubulin to define the size of microtubule-based cellular structures using a 'clutch-like' mechanism.
Use: pLink



Structural basis for receptor recognition and pore formation of a zebrafish aerolysinlike protein
EMBO REPORTS2016. Jia, N et al. Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Peoples R China.
ABSTRACT:Various aerolysin-like pore-forming proteins have been identified from bacteria to vertebrates. However, the mechanism of receptor recognition and/or pore formation of the eukaryotic members remains unknown. Here, we present the first crystal and electron microscopy structures of a vertebrate aerolysin-like protein from Danio rerio, termed Dln1, before and after pore formation. Each subunit of Dln1 dimer comprises a -prism lectin module followed by an aerolysin module. Specific binding of the lectin module toward high-mannose glycans triggers drastic conformational changes of the aerolysin module in a pH-dependent manner, ultimately resulting in the formation of a membrane-bound octameric pore. Structural analyses combined with computational simulations and biochemical assays suggest a pore-forming process with an activation mechanism distinct from the previously characterized bacterial members. Moreover, Dln1 and its homologs are ubiquitously distributed in bony fishes and lamprey, suggesting a novel fish-specific defense molecule.
Use: pLink



Cross-linking immunoprecipitation-MS (xIP-MS): topological analysis of chromatin-associated protein complexes using single affinity purification
Molecular & Cellular Proteomics2016. Makowski, MM et al. Radboud Inst Mol Life Sci, Geert Grootepl 28, NL-6525 GA Nijmegen, Netherlands.
ABSTRACT:In recent years, cross-linking mass spectrometry has proven to be a robust and effective method of interrogating macromolecular protein complex topologies at peptide resolution. Traditionally, cross-linking mass spectrometry workflows have utilized homogenous complexes obtained through time-limiting reconstitution, tandem affinity purification, and conventional chromatography workflows. Here, we present cross-linking immunoprecipitation-MS (xIP-MS), a simple, rapid, and efficient method for structurally probing chromatin-associated protein complexes using small volumes of mammalian whole cell lysates, single affinity purification, and on-bead cross-linking followed by LC-MS/MS analysis. We first benchmarked xIP-MS using the structurally well-characterized phosphoribosyl pyrophosphate synthetase complex. We then applied xIP-MS to the chromatin-associated cohesin (SMC1A/3), XRCC5/6 (Ku70/86), and MCM complexes, and we provide novel structural and biological insights into their architectures and molecular function. Of note, we use xIP-MS to perform topological studies under cell cycle perturbations, showing that the xIP-MS protocol is sufficiently straightforward and efficient to allow comparative cross-linking experiments. This work, therefore, demonstrates that xIP-MS is a robust, flexible, and widely applicable methodology for interrogating chromatin-associated protein complex architectures.
Use: pLink



Rational design of a protein that binds integrin v3 outside the ligand binding site
Nature Communications2016. Turaga, Ravi Chakra et al. Georgia State Univ, Dept Biol, POB 4010, Atlanta, GA 30303 USA
ABSTRACT:Integrin alpha(v)beta(3) expression is altered in various diseases and has been proposed as a drug target. Here we use a rational design approach to develop a therapeutic protein, which we call ProAgio, that binds to integrin alpha(v)beta(3) outside the classical ligand-binding site. We show ProAgio induces apoptosis of integrin alpha(v)beta(3)-expressing cells by recruiting and activating caspase 8 to the cytoplasmic domain of integrin alpha(v)beta(3). ProAgio also has anti-angiogenic activity and strongly inhibits growth of tumour xenografts, but does not affect the established vasculature. Toxicity analyses demonstrate that ProAgio is not toxic to mice. Our study reports a new integrin-targeting agent with a unique mechanism of action, and provides a template for the development of integrin-targeting therapeutics.
Use: pLink



Molecular architecture of the yeast Elongator complex reveals an unexpected asymmetric subunit arrangement
EMBO reports2016. Setiaputra, DT et al. Univ British Columbia, Dept Biochem & Mol Biol, Vancouver, BC, Canada.
ABSTRACT:Elongator is a 850 kDa protein complex involved in multiple processes from transcription to tRNA modification. Conserved from yeast to humans, Elongator is assembled from two copies of six unique subunits (Elp1 to Elp6). Despite the wealth of structural data on the individual subunits, the overall architecture and subunit organization of the full Elongator and the molecular mechanisms of how it exerts its multiple activities remain unclear. Using single-particle electron microscopy (EM), we revealed that yeast Elongator adopts a bilobal architecture and an unexpected asymmetric subunit arrangement resulting from the hexameric Elp456 subassembly anchored to one of the two Elp123 lobes that form the structural scaffold. By integrating the EM data with available subunit crystal structures and restraints generated from cross-linking coupled to mass spectrometry, we constructed a multiscale molecular model that showed the two Elp3, the main catalytic subunit, are located in two distinct environments. This work provides the first structural insights into Elongator and a framework to understand the molecular basis of its multifunctionality.
Use: pLink