pFind Studio: a computational solution for mass spectrometry-based proteomics



2014




Complex Proteomes Analysis Using Label-Free Mass Spectrometry-Based Quantitative Approach Coupled with Biomedical Knowledge
International Conference on Intelligent Information Processing2014. Chao Pan et al. College of Biomedical Engineering and Instrument Science, Key Laboratory of Biomedical Engineering of Ministry of Education of China, Zhejiang University
ABSTRACT:Label-free quantitative proteomics based on mass spectrometry plays an essential role in large-scale analysis of complex proteomes. Meanwhile, quantitative proteomics is not only a way for data processing, but also an important approach for exploring protein functions and interactions in a large-scale manner. An effective method combining quantitation and qualification should be built. To systematically overcome this challenge, we proposed a new label-free quantitative method using spectral counting in the proposed method, the count of shared peptides was considered as an optimized factor to accurately appraise abundance of Isoforms for complex proteomes. Large-scale functional annotations for complex proteomes were extracted by g:Profiler and were assigned to functional clusters. To test the effect of the methods, three groups of mitochondrial proteins including mouse heart mitochondrial dataset, mouse liver mitochondrial dataset and human heart mitochondrial dataset were selected for analysis. According to the biochemical properties of mitochondrial proteins, all functional annotations were assigned to various signalling pathway or functional clusters. We came to draw a conclusion that the strategy with shared peptides overcame inaccurate and overestimated results for low-abundant isoforms to improve accuracy, and quantitative proteomics coupled with biomedical knowledge can thoroughly comprehend functions and relationships for complex proteomes, and contribute to providing a new method for large-scale comparative or diseased proteomics.
Use: pFind



Strategy integrating stepped fragmentation and glycan diagnostic ion-based spectrum refinement for the identification of core fucosylated glycoproteome using mass spectrometry
Analytical Chemistry2014. Cao, QC et al. Beijing Inst Radiat Med, Beijing Proteome Res Ctr, State Key Lab Prote, Beijing 102206, Peoples R China.
ABSTRACT:Core fucosylation (CF) is a special glycosylation pattern of proteins that has a strong relationship with cancer. The Food and Drug Administration (FDA) has approved the core fucosylated alpha-fetoprotein as a biomarker for the early diagnosis of hepatocellular carcinoma (HCC). The technology for identifying core fucosylated proteins has significant practical value. The major method for core fucosylated glycoprotein/glycopeptide analysis is neutral loss-based MS3 scanning under collision-induced dissociation (CID) by ion trap mass spectrometry. However, due to the limited speed and low resolution of the MS3 scan mode, it is difficult to achieve high-throughput, with only dozens of core fucosylated proteins identified in a single run. In this work, we developed a novel strategy for the identification of CF glycopeptides at a large scale, integrating the stepped fragmentation function, one novel feature of quadrupole-orbitrap mass spectrometry, with "glycan diagnostic ion"-based spectrum optimization. By using stepped fragmentation, we were able to obtain both highly accurate glycan and peptide information of a simplified CF glycopeptide in one spectrum. Moreover, the spectrum could be recorded with the same high speed as the conventional MS2 scan. By using the "glycan diagnostic ion"-based spectrum refinement method, the efficiency of the CF glycopeptide discovery was significantly improved. We demonstrated the feasibility and reproducibility of our method by analyzing CF glycoproteomes of mouse liver tissue and HeLa cell samples spiked with standard CF glycoprotein. In total, 1364 and 856 CF glycopeptides belonging to 702 and 449 CF glycoproteins were identified, respectively, within a 78-min gradient analysis, which was approximately a 7-fold increase in the identification efficiency of CF glycopeptides compared to the currently used method. In this work, we took core fucosylated glycopeptides as a practical example to demonstrate the great potential of our novel method for use in glycoproteome analysis, and we also anticipate using the flexible novel method in other research fields.
Use: pFind



Visualization of arrestin recruitment by a G-protein-coupled receptor
Nature2014. Shukla, AK et al. Duke Univ, Med Ctr, Dept Med, Durham, NC 27710 USA.
ABSTRACT:G-protein-coupled receptors (GPCRs) are critically regulated by beta-arrestins, which not only desensitize G-protein signalling but also initiate a G-protein-independent wave of signalling(1-5). A recent surge of structural data on a number of GPCRs, including the beta(2) adrenergic receptor (beta(2)AR)-G-proteincomplex, has provided novel insights into the structural basis of receptor activation(6-11). However, complementary information has been lacking on the recruitment of beta-arrestins to activated GPCRs, primarily owing to challenges in obtaining stable receptor-beta-arrestin complexes for structural studies. Here we devised a strategy for forming and purifying a functional human beta(2)AR-beta-arrestin-1 complex that allowed us to visualize its architecture by single-particle negative-stain electron microscopy and to characterize the interactions between beta(2)AR and beta-arrestin 1 using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and chemical crosslinking. Electron microscopy two-dimensional averages and three dimensional reconstructions reveal bimodal binding of beta-arrestin 1 to the beta(2)AR, involving two separate sets of interactions, one with the phosphorylated carboxy terminus of the receptor and the other with its seven-transmembrane core. Areas of reduced HDX together with identification of crosslinked residues suggest engagement of the finger loop of beta-arrestin 1 with the seven-transmembrane core of the receptor. In contrast, focal areas of raised HDX levels indicate regions of increased dynamics in both the N and C domains of beta-arrestin 1 when coupled to the beta(2)AR. A molecular model of the beta(2)AR-beta-arrestin signalling complex was made by docking activated beta-arrestin 1 and beta(2)AR crystal structures into the electron microscopymap densities with constraints provided by HDX-MS and crosslinking, allowing us to obtain valuable insights into the overall architecture of a receptor-arrestin complex. The dynamic and structural information presented here provides a framework for better understanding the basis of GPCR regulation by arrestins.
Use: pLink



Structural characterization by cross-linking reveals the detailed architecture of a coatomer-related heptameric module from the nuclear pore complex
Molecular & Cellular Proteomics2014. Shi, Y et al. Rockefeller Univ, Lab Mass Spectrometry & Gaseous Ion Chem, Box 170, New York, NY 10065 USA.
ABSTRACT:Most cellular processes are orchestrated by macromolecular complexes. However, structural elucidation of these endogenous complexes can be challenging because they frequently contain large numbers of proteins, are compositionally and morphologically heterogeneous, can be dynamic, and are often of low abundance in the cell. Here, we present a strategy for the structural characterization of such complexes that has at its center chemical cross-linking with mass spectrometric readout. In this strategy, we isolate the endogenous complexes using a highly optimized sample preparation protocol and generate a comprehensive, high-quality cross-linking dataset using two complementary cross-linking reagents. We then determine the structure of the complex using a refined integrative method that combines the cross-linking data with information generated from other sources, including electron microscopy, X-ray crystallography, and comparative protein structure modeling. We applied this integrative strategy to determine the structure of the native Nup84 complex, a stable hetero-heptameric assembly (approximate to 600 kDa), 16 copies of which form the outer rings of the 50-MDa nuclear pore complex (NPC) in budding yeast. The unprecedented detail of the Nup84 complex structure reveals previously unseen features in its pentameric structural hub and provides information on the conformational flexibility of the assembly. These additional details further support and augment the protocoatomer hypothesis, which proposes an evolutionary relationship between vesicle coating complexes and the NPC, and indicates a conserved mechanism by which the NPC is anchored in the nuclear envelope.
Use: pXtract; pLink



Matching cross-linked peptide spectra: only as good as the worse identification
Molecular & Cellular Proteomics2014. Trnka, MJ et al. 600 16th St,Genentech Hall,Room N474A, San Francisco, CA 94158 USA.
ABSTRACT:Chemical cross-linking mass spectrometry identifies interacting surfaces within a protein assembly through labeling with bifunctional reagents and identifying the covalently modified peptides. These yield distance constraints that provide a powerful means to model the three-dimensional structure of the assembly. Bioinformatic analysis of cross-linked data resulting from large protein assemblies is challenging because each cross-linked product contains two covalently linked peptides, each of which must be correctly identified from a complex matrix of potential confounders. Protein Prospector addresses these issues through a complementary mass modification strategy in which each peptide is searched and identified separately. We demonstrate this strategy with an analysis of RNA polymerase II. False discovery rates (FDRs) are assessed via comparison of cross-linking data to crystal structure, as well as by using a decoy database strategy. Parameters that are most useful for positive identification of cross-linked spectra are explored. We find that fragmentation spectra generally contain more product ions from one of the two peptides constituting the cross-link. Hence, metrics reflecting the quality of the spectral match to the less confident peptide provide the most discriminatory power between correct and incorrect matches. A support vector machine model was built to further improve classification of cross-linked peptide hits. Furthermore, the frequency with which peptides cross-linked via common acylating reagents fragment to produce diagnostic, cross-linker-specific ions is assessed. The threshold for successful identification of the cross-linked peptide product depends upon the complexity of the sample under investigation. Protein Prospector, by focusing the reliability assessment on the least confident peptide, is better able to control the FDR for results as larger complexes and databases are analyzed. In addition, when FDR thresholds are calculated separately for intraprotein and interprotein results, a further improvement in the number of unique cross-links confidently identified is achieved. These improvements are demonstrated on two previously published cross-linking datasets.
Use: pLink



Reconstitution of active human core Mediator complex reveals a critical role of the MED14 subunit
nature structural & molecular biology2014. Cevher, MA et al. Rockefeller Univ, Lab Biochem & Mol Biol, 1230 York Ave, New York, NY 10021 USA.
ABSTRACT:The evolutionarily conserved Mediator complex is a critical coactivator for RNA polymerase II (Pol II)-mediated transcription. Here we report the reconstitution of a functional 15-subunit human core Mediator complex and its characterization by functional assays and chemical cross-linking coupled to MS (CX-MS). Whereas the reconstituted head and middle modules can stably associate, basal and coactivator functions are acquired only after incorporation of MED14 into the bimodular complex. This results from a dramatically enhanced ability of MED14-containing complexes to associate with Pol II. Altogether, our analyses identify MED14 as both an architectural and a functional backbone of the Mediator complex. We further establish a conditional requirement for metazoan-specific MED26 that becomes evident in the presence of heterologous nuclear factors. This general approach paves the way for systematic dissection of the multiple layers of functionality associated with the Mediator complex.
Use: pLink



Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex
EMBO2014. Yan Han et al. Institute for Systems Biology, Seattle, WA, USA
ABSTRACT:The conserved transcription coactivator SAGA is comprised of several modules that are involved in activator binding, TBP binding, histone acetylation (HAT) and deubiquitination (DUB). Crosslinking and mass spectrometry, together with genetic and biochemical analyses, were used to determine the molecular architecture of the SAGA-TBP complex. We find that the SAGA Taf and Taf-like subunits form a TFIID-like core complex at the center of SAGA that makes extensive interactions with all other SAGA modules. SAGA-TBP binding involves a network of interactions between subunits Spt3, Spt8, Spt20, and Spt7. The HAT and DUB modules are in close proximity, and the DUB module modestly stimulates HAT function. The large activator-binding subunit Tra1 primarily connects to the TFIID-like core via its FAT domain. These combined results were used to derive a model for the arrangement of the SAGA subunits and its interactions with TBP. Our results provide new insight into SAGA function in gene regulation, its structural similarity with TFIID, and functional interactions between the SAGA modules.
Use: pLink



Molecular architecture and function of the SEA complex, a modulator of the TORC1 pathway
Molecular & Cellular Proteomics2014. Algret, R et al. Univ Paris 11, CNRS UMR 8126, Inst Gustave Roussy, 11 Rue Edouard Vaillant, F-94805 Villejuif, France.
ABSTRACT:The TORC1 signaling pathway plays a major role in the control of cell growth and response to stress. Here we demonstrate that the SEA complex physically interacts with TORC1 and is an important regulator of its activity. During nitrogen starvation, deletions of SEA complex components lead to Tor1 kinase delocalization, defects in autophagy, and vacuolar fragmentation. TORC1 inactivation, via nitrogen deprivation or rapamycin treatment, changes cellular levels of SEA complex members. We used affinity purification and chemical cross-linking to generate the data for an integrative structure modeling approach, which produced a well-defined molecular architecture of the SEA complex and showed that the SEA complex comprises two regions that are structurally and functionally distinct. The SEA complex emerges as a platform that can coordinate both structural and enzymatic activities necessary for the effective functioning of the TORC1 pathway.
Use: pLink



Architecture of the Saccharomyces cerevisiae RNA polymerase I Core Factor complex
Nature Structural & Molecular Biology2014. Knutson, BA et al. Fred Hutchinson Canc Res Ctr, Div Basic Sci, 1124 Columbia St, Seattle, WA 98104 USA.
ABSTRACT:Core Factor (CF) is a conserved RNA polymerase (Pol) I general transcription factor comprising Rrn6, Rrn11 and the TFIIB-related subunit Rrn7. CF binds TATA-binding protein (TBP), Pol I and the regulatory factors Rrn3 and upstream activation factor. We used chemical cross-linking-MS to determine the molecular architecture of CF and its interactions with TBP. The CF subunits assemble through an interconnected network of interactions between five structural domains that are conserved in orthologous subunits of the human Poll factor SL1. We validated the cross-linking-derived model through a series of genetic and biochemical assays. Our combined results show the architecture of CF and the functions of the CF subunits in assembly of the complex. We extend these findings to model how CF assembles into the Poll preinitiation complex, providing new insight into the roles of CF, TBP and Rrn3.
Use: pLink



A mechanism for actin filament severing by malaria parasite actin depolymerizing factor 1 via a low affinity binding interface
Journal of Biological chemistry2014. Wong, W et al. Imperial Coll Sci Technol & Med, Dept Life Sci, London SW7 2AZ, England.
ABSTRACT:Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction. Low densities of ADF/cofilins, in contrast, result in the optimal severing of the filament. To date, how these two contrasting modalities are achieved by the same protein remains uncertain. Here, we define the proximate amino acids between the actin filament and the malaria parasite ADF/cofilin, PfADF1 from Plasmodium falciparum. PfADF1 is unique among ADF/cofilins in being able to sever F-actin but do so without stable filament binding. Using chemical cross-linking and mass spectrometry (XL-MS) combined with structure reconstruction we describe a previously overlooked binding interface on the actin filament targeted by PfADF1. This site is distinct from the known binding site that defines decoration. Furthermore, total internal reflection fluorescence (TIRF) microscopy imaging of single actin filaments confirms that this novel low affinity site is required for F-actin severing. Exploring beyond malaria parasites, selective blocking of the decoration site with human cofilin (HsCOF1) using cytochalasin D increases its severing rate. HsCOF1 may therefore also use a decoration-independent site for filament severing. Thus our data suggest that a second, low affinity actin-binding site may be universally used by ADF/cofilins for actin filament severing.
Use: pLink